小升初数学综合模拟试卷8
一、填空题:
2.在下列的数字上加上循环点,使不等式能够变正确: 0.9195<0.9195<0.9195<0.9195<0.9195
3.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.
4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.
5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.
6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.
7.如图,半圆S1的面积是14.13cm圆S2的面积是19.625cm那么长方形(阴影部分)的面积是______cm.
2
2
2
8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG边长是______.
9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.
10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计). 二、解答题:
1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?
2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?
3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.
4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?
答案
一、填空题:
3.(37)
将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形. 4.(6年)
今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年. 5.(154)
145×4-(139+143+144)=154. 6.(421)
这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421. 7.(5)
由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径
9.(16升)
由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:
故较少容器原有水量8×2=16(升).
把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.
如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶
二、解答题: 1.(26棵)
要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=26 2.(28米/秒,260米)
(1980-1140)÷(80-50)=28(米/秒) 28×50-1140=260(米) 3.不可能.
反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现. 4.(106元)
(元).