一次函数的应用典型练习题
1、若点(1,2)及(m,3)都在正比例函数y=kx的图象上,求m的值.
2、已知直线y=kx+b经过点(-2,-1)和点(2,-3),求这条直线的函数解析式.
3、某一次函数的图象平行于直线 ,且过点(4,7),求函数解析式.
4、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式.
5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,求y与x之间的函数关系式.
6、 声音在空气中传播的速度y(米/秒)(简称音速)是气温x(℃)的一次函数,下表列出了一组不同气温时的音速:
气温x(℃) 音速(米/秒) 0 331 5 334 10 337 15 340 20 343 y?1x2(1)求y与x之间的函数关系式;
(2)气温x=22(℃)时,某人看到烟花燃放5秒后才听到声音响,此人与燃放的烟花所在地约相距多远?
7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示:
(1)分别写出x≤5和x>5时,y与x的函数解析式;
(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准.
(3)若某户居民该月用水3.5吨,则应交水费多少元? 若该月交水费9元,则用水多少吨?
8、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒).
(1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙
(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式.
(2)就乒乓球盒数讨论去哪家商店购买合算?
9、 某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示.
(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式; (2)两种租书方式每天租书的收费分别是多少元?
(3)若两种租书卡的使用期限均为一年,则在这一年中如何选择这两种租书方式比较合算?
10、预防“非典”期间,某种消毒液A市需要6吨,B市需要8吨,正好M市储备有10吨,N市储备有4吨,预防“非典”领导小组决定将这14吨消毒液调往A市和B市,消毒液的运费价格如下表,设从M市调运x吨到A市.
(1)求调运14吨消毒液的总运费y关于x的函数关系式; (2)求出总运费最低的调运方案,最低运费的多少?
11、 已知一次函数y=(m-1)x+2m+1 (1)若图象经过原点,求m的值; (2)若图象平行于直线y=2x,求m的值; (3)若图象交y轴于正半轴,求m的取值范围; (4)若图象经过一、二、四象限,求m的取值范围; (5)若图象不过第三象限,求m的取值范围; (6)若随的增大而增大,求m的取值范围.
12、 已知一次函数 y=-x+b 与 y=2x+a 的图像都经过A(-2,0),且与轴分别交于B、C两点,求△ABC的面积.
13、 若直线y=3x+b与两坐标轴所围成的三角形的面积为6,求b的值.
14、 无论m为何值,直线y=x+2m与y=-x+4的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
15、 已知y=y1+y2,其中y1与x成正比例,y2与(x-2)成正比例,又当x=-1时,y=2;当x=2时,y=5. 求y与x的函数关系式.
M N A 60 35 B 100 70