电大经济数学基础形成性考核册及参考答案
(一)填空题 1.limx?0x?sinx?___________________.答案:0 x2.设
?x2?1,x?0,在x?0处连续,则k?________.答案:1 f(x)???k,x?0?y?x在(1,1)的切线方程是 .答案:y?3.曲线
11x? 224.设函数5.设
f(x?1)?x2?2x?5,则f?(x)?____________.答案:2x ππf(x)?xsinx,则f??()?__________.答案:? 22(二)单项选择题 1. 函数y?x?1的连续区间是( D ) 2x?x?2A.(??,1)?(1,??) B.(??,?2)?(?2,??) C.(??,?2)?(?2,1)?(1,??) D.(??,?2)?(?2,??)或(??,1)?(1,??) 2. 下列极限计算正确的是( B ) A.limxxx?0?1 B.lim?x?0xx?1 C.lim3. 设yx?0xsin1sinx?1 D.lim?1 x??xxB ). ?lg2x,则dy?( A.11ln101dx B.dx C.dx D.dx 2xxln10xx4. 若函数f (x)在点x0处可导,则( B )是错误的. A.函数f (x)在点x0处有定义 B.limx?x0f(x)?A,但A?f(x0) C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微 5.当x?0时,下列变量是无穷小量的是( C ).
A.2 B.
(三)解答题 1.计算极限
xsinx C.ln(1?x) D.cosx xx2?3x?21??(1)lim
x?12x2?1
x2?5x?61? (2)lim2x?2x?6x?82原式=lim(x-2)(x-3)
x?2(x-2)(x-4)1?x?11??
x2(3)limx?0原式=lim(1?x?1)(1?x?1)
x?0x(1?x?1)=limx?0?1 1?x?1 =?1 2x2?3x?51? (4)limx??3x2?2x?4335?2xx原式=343??2xx1?(5)lim1= 3sin3x3? x?0sin5x5sin3x33x原式=lim5x?0sin5x5x =3 5x2?4?4 (6)limx?2sin(x?2)原式=limx?2x?2
sin(x?2)x?2 = 4
lim(x?2)=
x?2sin(x?2)limx?2x?2
2.设函数
1?xsin?b,x?0?x?f(x)??a,x?0,
?sinxx?0?x?f(x)在x?0处有极限存在?
问:(1)当a,b为何值时,
(2)当a,b为何值时,解:(1)lim当 (2). f(x)在x?0处连续.
x?0?x?0?f(x)?b,limf(x)?1
limf(x)?f(0)?1 x?0a?b?1时,有当a?b?1时,有limf(x)?f(0)?1 x?0 函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)
y?x2?2x?log2x?22,求y? 答案:(2)
y??2x?2xln2?1 xln2y?ax?b,求y? cx?d答案:y??1a(cx?d)?c(ax?b)ad?bc?2(cx?d)(cx?d)2,求 (3)
y?3x?5y? 3?3答案:y???(3x?5)2 2(4)
y?x?xex,求y? 答案:
y??12x?(ex?xex)=
12x?ex?xex
(5)
y?eaxsinbx,求dy
y??(eax)?(sinbx?eax(sinbx)?答案:∵
?aeaxsinbx?beaxcosbx?eax(sinbx?bcosbx)ax
∴dy?e(asinbx?bcosbx)dx
(6)
y?e?xx,求dy
1x113xx 答案:∵y???2e?x2311x?2ex)dx ∴dy?(2x(7)
y?cosx?e?x2,求dy
2答案:∵
y???sinx?(x)??e?x?(?x2)?
sinx?2xe?x2x22 =? ∴dy?(?sinx?2xe?x)dx 2x(8)
y?sinnx?sinnx,求y? 答案:y??nsinn?1x?cosx?ncosnx (9)
y?ln(x?1?x2),求y? 答案:y??1x?1?x1?2?(x?1?x2)? =1?x2?x1?x21x?1?x 2?(1?x1?x2) =x?1?xcot1x2 =11?x2(10)y?2?1x1?3x2?2xx,求y? 11?12y??2?ln2?(cos)??(x?x6?2)?x答案:
1cos1111??2?2xln2?sin??xx2x36x5cos
4.下列各方程中
y是x的隐函数,试求y?或dy
(1) 方程两边对x求导: 所以 dy?y?2x?3dx
2y?x (2) 方程两边对x求导:
4?cos(x?y)?yexy 所以 y??cos(x?y)?xexy5.求下列函数的二阶导数: (1)
y?ln(1?x2),求y??
答案: (1)
y???122x1?x212
(2)
y??(x1?31?12?x)???x?x2
22作业(二) (一)填空题 1.若2.
?f(x)dx?2?x?2x?c,则f(x)?___________________.答案:2xln2?2 ?(sinx)?dx?________.答案:sinx?c f(x)dx?F(x)?c,则?xf(1?x2)dx? .答案:?de2ln(1?x)dx?___________.答案:0 ?1dx??0x3. 若
1F(1?x2)?c 24.设函数5. 若P(x)11?t2dt,则P?(x)?__________.答案:?11?x2 (二)单项选择题 1. 下列函数中,( D )是xsinx的原函数. A.211cosx2 B.2cosx2 C.-2cosx2 D.-cosx2 22?d(cosx) B.ln2. 下列等式成立的是( C ). A.sinxdx1xdx?d() xC.2xdx?11dx?dx d(2x) D.ln2x3. 下列不定积分中,常用分部积分法计算的是( C ). A.
2?cos(2x?1)dx, B.?x1?xdx C.?xsin2xdx D.?xdx
1?x24. 下列定积分计算正确的是( D ). A.
?1?12xdx?2 B.?2316?1dx?15
???C.
??(x???x)dx?0 D.?sinxdx?0
5. 下列无穷积分中收敛的是( B ). A.
???1??1????1xdx B.?dx C. D.edxsinxdx 2??101xx