绝密★启用前
2019年普通高等学校招生全国统一考试
理科数学
本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔
将试卷类型(B)填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
目要求的。
1.已知集合M?{x?4?x?2},N?{xx2?x?6?0?,则MA.{x?4?x?3?
B.{x?4?x??2?
N=
D.{x2?x?3?
C.{x?2?x?2?
2.设复数z满足z?i=1,z在复平面内对应的点为(x,y),则 A.(x+1)?y?1
22B.(x?1)?y?1
22C.x?(y?1)?1
22D.x?(y+1)?1
22a?log20.2,b?20.2,c?0.20.3,则 3.已知 A.a?b?c
B.a?c?b
C.c?a?b
D.b?c?a
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5?15?1(22≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
5?1
.若某人满足上述两个黄金分割比例,且腿长为105 cm,头2
顶至脖子下端的长度为26 cm,则其身高可能是
4
A.165 cm 5.函数f(x)=B.175 cm 在[??,?]的图像大致为
C.185 cm D.190 cm
A. B.
C. D.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
A.
5 16B.
11 32C.
21 32D.
11 167.已知非零向量a,b满足|a|?2|b|,且(a?b)?b,则a与b的夹角为 A.
π 6B.
π 3C.
2π 3D.
5π 68.如图是求
12?12?12的程序框图,图中空白框中应填入
4
A.A=
1 2?AB.A=2?1 AC.A=
1
1?2AD.A=1?1 2A
9.记Sn为等差数列{an}的前n项和.已知S4?0,a5?5,则 A.an?2n?5
an?3n?10 B. 2C.Sn?2n?8n
D.Sn?12n?2n 210.已知椭圆C的焦点为F1(?1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|?2|F2B|,
|AB|?|BF1|,则C的方程为 x2?y2?1 A.2x2y2??1 B.
32x2y2??1 C.
43x2y2??1 D.5411.关于函数f(x)?sin|x|?|sin x|有下述四个结论:
①f(x)是偶函数
②f(x)在区间(
?2,?)单调递增
③f(x)在[??,?]有4个零点 其中所有正确结论的编号是 A.①②④
B.②④
④f(x)的最大值为2
C.①④ D.①③
12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F
分别是PA,PB的中点,∠CEF=90°,则球O的体积为 A.86?
B.46?
C.26?
D.6?
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线y?3(x?x)e在点(0,0)处的切线方程为____________.
2x4
214.记Sn为等比数列{an}的前n项和.若a1?,a4?a6,则S5=____________.
1315.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根
据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.
x2y216.已知双曲线C:2?2?1(a?0,b?0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近
ab线分别交于A,B两点.若F,F1B?F2B?0,则C的离心率为____________. 1A?AB三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题
考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,设(sinB?sinC)2?sin2A?sinBsinC.
(1)求A;
(2)若2a?b?2c,求sinC.
4
18.(12分)
如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE; (2)求二面角A-MA1-N的正弦值.
4