好文档 - 专业文书写作范文服务资料分享网站

用遗传算法优化BP神经网络的Matlab编程实例

天下 分享 时间: 加入收藏 我要投稿 点赞

用遗传算法优化BP神经网络的Matlab

编程实例

由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。

程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY)

%--------------------------------------------------------------------------

%??GABPNET.m

%??使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络

%--------------------------------------------------------------------------

%数据归一化预处理 nntwarn off XX=premnmx(XX); YY=premnmx(YY); %创建网络

net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');

%下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模

initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

%下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,...

??'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);

%绘收敛曲线图 figure(1)

plot(trace(:,1),1./trace(:,3),'r-'); hold on

plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation');

ylabel('Sum-Squared Error');

figure(2)

plot(trace(:,1),trace(:,3),'r-'); hold on

plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness');

%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络

[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.LW{2,1}=W1; net.LW{3,2}=W2; net.b{2,1}=B1; net.b{3,1}=B2; XX=P; YY=T; %设置训练参数

%训练网络

net=train(net,XX,YY);

程序二:适应值函数

function [sol, val] = gabpEval(sol,options) % val - the fittness of this individual

% sol - the individual, returned to allow for Lamarckian evolution

% options - [current_generation] load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 for i=1:S, ? ?x(i)=sol(i); end;

[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

程序三:编解码函数

function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x)

load data2

nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 % 前R*S1个编码为W1 for i=1:S1, ? ? for k=1:R,

? ?? ?W1(i,k)=x(R*(i-1)+k); ? ? end end

% 接着的S1*S2个编码(即第R*S1个后的编码)为W2

for i=1:S2, ? ?for k=1:S1,

? ?? ?W2(i,k)=x(S1*(i-1)+k+R*S1); ? ?end end

% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1

for i=1:S1,

? ?B1(i,1)=x((R*S1+S1*S2)+i); end

% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2

for i=1:S2,

? ?B2(i,1)=x((R*S1+S1*S2+S1)+i); end

% 计算S1与S2层的输出 A1=tansig(W1*P,B1); A2=purelin(W2*A1,B2); % 计算误差平方和 SE=sumsqr(T-A2);

val=1/SE; % 遗传算法的适应值

注意:上面的函数需要调用gaot工具箱,请从网上搜索下载

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的Matlab编程实例由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。程序一:GA训练BP权值的主函数functionnet=GABPN
推荐度:
点击下载文档文档为doc格式
7ipy444lhv4n25q6ny0j2r4yi9c8on003ua
领取福利

微信扫码领取福利

微信扫码分享