2020年高中必修五数学上期中模拟试题带答案(2)
一、选择题
1.下列命题正确的是 A.若 a>b,则a2>b2 C.若a>b,则a3>b3
B.若a>b,则 ac>bc D.若a>b,则
11< abD.2047
n2.已知数列{an}满足a1?1,an?1?an?2,则a10?( )
A.1024 B.2048 C.1023
3.下列函数中,y的最小值为4的是( )
4A.y?x?
xC.y?ex?4e?x
B.y?2(x2?3)x?22
D.y?sinx?4(0?x??) sinx?x?y?0?4.已知x,y满足?x?y?4?0,则3x?y的最小值为( )
?x?4?A.4
B.8
C.12
D.16
5.已知数列?an?的通项公式为an?log2Sn??5成立的自然数n( )
n?1n?N*?,设其前n项和为Sn,则使?n?2B.有最大值63 D.有最大值31
A.有最小值63 C.有最小值31
6.已知幂函数y?f(x)过点(4,2),令an?f(n?1)?f(n),n?N?,记数列?前n项和为Sn,则Sn?10时,n的值是( ) A.10
B.120
C.130
D.140
7.当x??1,2?时,不等式x2?mx?2?0恒成立,则m的取值范围是( ) A.??3,???
B.?22,??
?1??的?an???C.??3,???
D.???22,??
?8.已知:x?0,y?0,且范围是( ) A.??4,2?
21??1,若x?2y?m2?2m恒成立,则实数m的取值xyC.??2,4?B.???,?4?U?2,??? D.???,?2???4,???
?x?y?2?0?9.若x,y满足?x?y?4?0,则z?y?2x的最大值为( ).
?y?0?A.?8
B.?4
C.1
D.2
x?0(k为常数),若目标函数z=x+3y的最大值为8,10.已知x,y满足条件{y?x2x?y?k?0则k=( ) A.-16
B.-6
8C.-
3D.6
11.已知正项数列{an}中,a1?a2?L?an?项公式为( ) A.an?n
B.an?n
2n(n?1)(n?N*),则数列{an}的通2n2D.an?
2nC.an?
2x?112.已知a>0,x,y满足约束条件{x?y?3,若z=2x+y的最小值为1,则a=
y?a(x?3)A.
B.
C.1
D.2
二、填空题
13.已知等差数列?an?的前n项和为Sn,且S13?6,则3a9?2a10?__________. 14.已知数列?an?是等差数列,若a4?a7?a10?17,
a4?a5?a6?L?a12?a13?a14?77,且ak?13,则k?_________.
15.已知数列?an?是递增的等比数列,a1?a4?9,a2a3?8,则数列?an?的前n项和等于 .
16.设等差数列?an?的前n项和为Sn.若a3?5,且S1,S5,S7成等差数列,则数列
?an?的通项公式an?____.
17.?ABC的内角A,B,C的对边分别为a,b,c,若2bcosB?acosC?ccosA,则B? ________.
18.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A,B两点间的距离,现在珊瑚群岛上取两点C,D,测得CD?80,?ADB?135?,
?BDC??DCA?15?,?ACB?120?,则A,B两点的距离为________.
19.若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 (写出所有正确命题的编号).①ab≤1; ②a+b≤2; ③a2+b2≥2;④a3+b3≥3;⑤11??2. ab?2x?y?0?20.已知实数x,y满足约束条件?y?x,若z?2x?y的最小值为3,则实数
?y??x?b?b?____ 三、解答题
21.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=5百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=?,??(
?,?). 2
(1)当cos?=?5时,求小路AC的长度; 5(2)当草坪ABCD的面积最大时,求此时小路BD的长度. 22.在等差数列?an?中,a2?a7??23,a3?a8??29. (1)求数列?an?的通项公式;
(2)设数列?an?bn?是首项为1,公比为2的等比数列,求?bn?的前n项和Sn. 23.在?ABC中,角A,B,C所对的边分别为a,b,c,且
3cosAcosC(tanAtanC?1)?1.
(Ⅰ)求sinB的值;
(Ⅱ)若a?c?33,b?3,求的面积.
24.在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin?A?(1)求A;
(2)若△ABC的面积S=?????. 3?32
c,求sin C的值. 4v?11?v325.已知向量a???与b??1,y?共线,设函数y?f?x?. ?2,2sinx?2cosx???(1)求函数f?x?的最小正周期及最大值.
(2)已知锐角?ABC的三个内角分别为A,B,C,若有f?A???????3,边3?BC?7,sinB?21,求?ABC的面积. 726.已知数列?an?是等差数列,数列?bn?是公比大于零的等比数列,且a1?b1?2,
a3?b3?8.
(1)求数列?an?和?bn?的通项公式; (2)记cn?abn,求数列?cn? 的前n项和Sn.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】
对于A,若a?1,b??1,则A不成立;对于B,若c=0,则B不成立;对于C,若a?b,则a3?b3,则C正确;对于D,a?2,b??1,则D不成立.
故选C
2.C
解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】
nn因为an?1?an?2,所以an?1?an?2,
1?210因此a10?a10?a9?a9?a8?L?a2?a1?a1?2?2?L?2?1??1023,选C.
1?2【点睛】
本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.
983.C
解析:C 【解析】 【分析】
由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】
选项A错误,Qx可能为负数,没有最小值;
?2y?2选项B错误,化简可得?x?2????, 2x?2?11x?222由基本不等式可得取等号的条件为x?2?,即x2??1,
显然没有实数满足x2??1;
选项D错误,由基本不等式可得取等号的条件为sinx?2, 但由三角函数的值域可知sinx?1; 选项C正确,由基本不等式可得当ex?2, 即x?ln2时,y?e?4e【点睛】
本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用?或?时等号能否同时成立).
x?x取最小值4,故选C.
4.A
解析:A 【解析】 【分析】
作出可行域,变形目标函数并平移直线y?3x,结合图象,可得最值. 【详解】
?x?y?0?作出x、y满足?x?y?4?0所对应的可行域(如图VABC),
?x?4?变形目标函数可得y?3x?z,平移直线y?3x可知, 当直线经过点A(2,2)时,截距?z取得最大值,
2020年高中必修五数学上期中模拟试题带答案(2)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)