考生须知
A.
9.若分式A.0.476?10A.?5
55. 函数y=A.-4
B.4B.?1
∠ABC=50°,则∠D为
A.50° B.45° C.40°
B.476?10
211 B.
234.x?2+2y?6= 0,则x?y的值为
x?1中,自变量x的取值范围是
C.C.-
x?4的值为0,则x的值为 .x?2210.分解因式:ax?4a= .C.1
1411??6 ,则等边三角形ABC的边长为CEBF111A. B. C. 842二、填空题(共4道小题,每小题4分,共16分)
一、选择题(共8道小题,每小题4分,共32分)
下列各题均有四个选项,其中只有一个是符合题意的.1. -4的相反数是
7.如图,已知,AB是⊙O的直径,点C,D在⊙O上,
D. 30°
2 3C.4.76?1011.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD的面积为 .8.已知:如图,在等边三角形ABC中,M、N分别是AB、AC的中点,D是MN上任意一点,CD、BD的延长线分别与AB、AC交于F、E,若
1.本试卷共6页,共五道大题,25个小题,满分120分。考试时间120分钟。2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。4.考试结束,请将本试卷和答题卡一并交回。
昌平区2010—2011学年第二学期初三年级第一次统一练习
数 学 2011.4
A.x?1 B.x?1 C.x?1 D.x?1
6.在“爱的奉献”为地震灾区捐款活动中,某班以小组为单位的捐款额(单位:元)分别为10,20,15,15,21,15,在这组数据中,众数及中位数分别是
CA.15,10 B.15,15 C.15,20 D.15,16
2.据昌平交通局网上公布,地铁昌平线(一期)2011年1月4日出现上班运营高峰,各站进出站约
47600人次. 将47 600用科学记数法表示为
3. 在一个不透明的笔袋中装有两支黑色笔和一支红色笔,除颜色不同外其他都相同,随机从其中摸出一支黑色笔的概率是
1
D.5D.1
D.1
AD
4D.
14BD.4.76?10AOBFM5ADBODENCC则S1=
2x15.解分式方程:??1.
x?1x?1过点P1,P2,P3,…,Pn,Pn?1分别作x轴、
三、解答题(共6道小题,每小题5分,共30分)
2, S1+S2+S3+…+Sn=
20每点的横坐标与它前面一个点的横坐标的差都为2,
13.计算:?22?4sin30??(3.14??)?8.P2,P3,…,Pn,Pn?1,若P1的横坐标为a,且以后
y轴的垂线段,构成若干个矩形如图所示,将图中阴影
部分的面积从左到右依次记为S1,S2,S3,…,Sn,
1212.如图,在函数y?(x>0)的图象上,有点P1,
x17.当2x?3x?1?0时 ,求(x?2)?x(x?5)?2x?8的值.
14.解不等式:5x?12≤2(4x?3),并把它的解集在数轴上表示出来.
16.如图,已知线段AC与BD相交于点O,联结AB、DC,E为OB的中点,F为OC的中点,联结EF.若∠A=∠D,∠OEF=∠OFE,求证:AB=DC.
18.列方程(组)解应用题
国家的“家电下乡”政策激活了农民购买能力,提高了农民的生活水平。“家电下乡”的补贴标准是:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户.李大叔购买了一台彩电和一台洗衣机,从乡政府领到了390元补贴款. 若彩电的售价比洗衣机的售价高1000元,求彩电和洗衣机的售价各是多少元.
2
.(用n的代数式表示)
BA
E
OF
DC
?yOS12y = 12xP1S204P2S368P3P4x
(2)求下底AB的长.
个个60个
(1)求∠CBD的度数;
进球数(个)
个个10个个个个个个个20个5432106987项目选择情况统计图:
人数2
8
1
7
4
6
四、解答题(共4道小题,每小题均5分,共20分)
训练后篮球定时定点投篮测试进球数统计表:
19.在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,BC=2cm.
20.如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;(2)当AB=10,BC=8时,求BD的长.
21.某班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
请你根据图表中的信息回答下列问题:
(1)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 (2)补全“训练前篮球定时定点投篮测试进球数统计图;(3)训练后篮球定时定点投篮人均进球数 .
训练前定时定点投篮测试进球数统计图:
3
个个(个)347
5
8
4
A个5D2
678个个个(个)3
CB人;
A积是:
探索创新:
B个1.
C22. 现场学习题
问题背景:在△ABC中,AB、BC、AC
23. 已知二次函数y?(k?1)x?(3k?1)x?2.
222个22(1)请你将△ABC的面积直接填写在横线上.________
思维拓展:
三边的长分别为2、13、17,求这个三角形的面积.
五、解答题(共3道小题,第23小题6分,第24,25小题各8分,共22分)
请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为:
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为2a、25a、
(1)二次函数的顶点在x轴上,求k的值;
(2)若二次函数与x轴的两个交点A、B均为整数点(坐标为整数的点),当k为整数时,求A、B两点的坐标.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
26a(a?0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面
(3)若△ABC三边的长分别为4m?n、16m?n、2m?n (m?0,n?o,m?n) ,
4
222个32.
24.已知, 点P是∠MON的平分线上的一动点,
射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交
射线ON于点B,且使∠APB+∠MON=180°.
(1)利用图1,求证:PA=PB;
(2)如图2,若点C是AB与OP的交点,当
S?POB?3S?PCB时,求PB与PC的比值;
(3)若∠MON=60°,OB=2,射线AP
交ON于点D,且满足且?PBD??ABO,请借助图3补全图形,并求OP的长.
5
MTPA图O1BNMTAP图2COBNMATP图3COBN