???x2x3x33?x?a?x???o?x???bx?x??o?x3??236?????1
?limx?0kx3?1?a?x???b??limx?0?a?2a3b43?x?x?x?o?x?2?36?1 3kxa?1 3k即1?a?0,b??0,a211?a??1,b??,k??
23 (16)(本题满分10分) 设函数f?x?在定义域I上的导数大于零,若对任意的
x0?I,由线y=f?x?在点x0,f?x0?处的切线与直线x?x0及x轴所围成区域的面
??积恒为4,且f?0??2,求f?x?的表达式.
【答案】f(x)?8. 4?x【解析】设f?x?在点?x0,f?x0??处的切线方程为:y?f?x0??f??x0??x?x0?,
f?x0??x0,
f??x0?令y?0,得到x??故由题意,程,
f?x0?11f?x0???x0?x??4,即f?x0???4,可以转化为一阶微分方
?22f?x0?y288即y??, ????=,两边同时积分可得x=?+??,将f(0)=2,代入上2????????8式可得c=4 即f?x??8.
?x?4(17)(本题满分10分)
已知函数f?x,y??x?y?xy,曲线C:x2?y2?xy?3,求f?x,y?在曲线C上的最大方向导数. 【答案】3
【解析】因为f?x,y?沿着梯度的方向的方向导数最大,且最大值为梯度的模.
fx'?x,y??1?y,fy'?x,y??1?x,
故gradf?x,y???1?y,1?x?,模为此题目转化为对函数g?x,y??的最大值.即为条件极值问题.
22?1?y???1?x?,
22?1?y???1?x?在约束条件C:x2?y2?xy?3下
为了计算简单,可以转化为对d(x,y)??1?y???1?x?在约束条件
C:x2?y2?xy?3下的最大值.
22构造函数:F?x,y,????1?y???1?x????x2?y2?xy?3?
22?Fx??2?1?x????2x?y??0??Fy??2?1?y????2y?x??0,得到M1?1,1?,M2??1,?1?,M3?2,?1?,M4??1,2?. ?22?F?x?y?xy?3?0??d?M1??8,d?M2??0,d?M3??9,d?M4??9
所以最大值为9?3. (18)(本题满分 10 分)
(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)(vx)]??u?(x)(vx)?u(x)v?(x) (II)设函数u1(x),u2(x),L,un(x)可导,f(x)?u1(x)u2(x)Lun(x),写出f(x)的求导公式.
【解析】(I)[u(x)v(x)]??limu(x?h)v(x?h)?u(x)v(x)
h?0hu(x?h)v(x?h)?u(x?h)v(x)?u(x?h)v(x)?u(x)v(x)
h?0hv(x?h)?v(x)u(x?h)?u(x) ?limu(x?h)?limv(x)
h?0h?0hh ?lim ?u(x)v?(x)?u?(x)v(x)
(II)由题意得
f?(x)?[u1(x)u2(x)Lun(x)]?
?u1?(x)u2(x)Lun(x)?u1(x)u2?(x)Lun(x)?L?u1(x)u2(x)Lun?(x)
(19)(本题满分 10 分)
??z?2?x2?y2, 已知曲线L的方程为?起点为A0,2,0,终点为B0,?2,0,
??z?x,????计算曲线积分I???y?z?dx??z2?x2?y?dy?(x2?y2)dz.
L【答案】2π 2?x?cos??ππ【解析】由题意假设参数方程?y?2sin?,?:??
22?z?cos???π2?π2?[?(2sin??cos?)sin??2sin?cos??(1?sin2?)sin?]d?
??π?2sin2??sin?cos??(1?sin2?)sin?d?
2π2?22?sin2?d??π202π 2(20) (本题满11分)
设向量组α,α2,α3内R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+?k+1?α3.
1(I)证明向量组?1?2?3为R3的一个基;
(II)当k为何值时,存在非0向量ξ在基α1,α2,α3与基?1?2?3下的坐标相同,并求所有的ξ.
【答案】
【解析】(I)证明:
??1,?2,?3???2?1+2k?3,2?2,?1+?k?1??3??2????1,?2,?3??0?2k?01??20?0k?1??
2 00210?22k0k?122k1?4?0 k?1故β1,β2,β3为R3的一个基. (II)由题意知,
??k1?1?k2?2?k3?3?k1?1?k2?2?k3?3,??0
即
k1??1??1??k2??2??2??k3??3??3??0,ki?0,i?1,2,3
k1?2?1+2k?3??1??k2?2?2??2??k3??1+?k+1??3??3??0k1??1+2k?3??k2??2??k3??1+k?3??0有非零解即?1+2k?3,?2,?1+k?3?0
10110?0,得k=0
即02k0kk1?1?k2?2?k3?1?0?k2?0,k1?k3?0