_*
【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.
19.(9分)(2017?河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,
≈1.41)
【考点】TB:解直角三角形的应用﹣方向角问题.
【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=
,可得=
,求出x,再求出BC、AC,分别求出A、B两船到C的
时间,即可解决问题.
【解答】解:如图作CE⊥AB于E.
在Rt△ACE中,∵∠A=45°,
∴AE=EC,设AE=EC=x,则BE=x﹣5,
_*
在Rt△BCE中, ∵tan53°=∴=
,
,
解得x=20, ∴AE=EC=20, ∴AC=20BC=
=28.2, =25,
=0.94小时,B船到C的时间=
=1小时,
∴A船到C的时间≈
∴C船至少要等待0.94小时才能得到救援.
【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
20.(9分)(2017?河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).
(1)填空:一次函数的解析式为 y=﹣x+4 ,反比例函数的解析式为 y= ; (2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.
【考点】G8:反比例函数与一次函数的交点问题.
【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式. (2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由
_*
题意可知:1≤x≤3,从而可求出S的范围 【解答】解:(1)将B(3,1)代入y=, ∴k=3,
将A(m,3)代入y=, ∴m=1, ∴A(1,3),
将A(1,3)代入代入y=﹣x+b, ∴b=4, ∴y=﹣x+4
(2)设P(x,y), 由(1)可知:1≤x≤3, ∴PD=y=﹣x+4,OD=x, ∴S=x(﹣x+4),
∴由二次函数的图象可知: S的取值范围为:≤S≤2 故答案为:(1)y=﹣x+4;y=.
【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.
21.(10分)(2017?河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同. (1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.
_*
【考点】9A:二元一次方程组的应用.
【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)
(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w
活动一
、w
活动二
关于m的函数关系式,再
分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.
(按购买3个A种魔方和4个B种魔方需要130元解答)
(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w
活动一
、w
活动二
关于m的函数关系式,再
分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.
【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答) 解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个, 根据题意得:解得:
.
,
_*
答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.
(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,
根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600; w活动二=20m+15(100﹣m﹣m)=﹣10m+1500. 当w活动一<w活动二时,有10m+600<﹣10m+1500, 解得:m<45;
当w活动一=w活动二时,有10m+600=﹣10m+1500, 解得:m=45;
当w活动一>w活动二时,有10m+600>﹣10m+1500, 解得:45<m≤50.
综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠. (按购买3个A种魔方和4个B种魔方需要130元解答)
解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个, 根据题意得:解得:
.
,
答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.
(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,
根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520; w活动二=26m+13(100﹣m﹣m)=1300. 当w活动一<w活动二时,有15.6m+520<1300, 解得:m<50;
当w活动一=w活动二时,有15.6m+520=1300, 解得:m=50;
当w活动一>w活动二时,有15.6m+520>1300, 不等式无解.
综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种
2017年度河南地区中考数学试卷
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)