高等数学模拟卷 1 一 求下列极限 1 lim
1sinn=0(有界量乘无穷小量) n??n?exx?0af(x)?取什么值,连续 ?二
?a?xx?0答:根据函数在一点处连续的定义,lim?f(x)?a?lim?f(x),而
x?0x?0x?1xx?0x2 求lim={
x?0x?xlim??1x?0?xlim? 3 求lime={x?01xx?0lim?f(x)=lim?ex=1
x?0所以 a=1
三 计算下列各题 1
y’=2(sinx·lnx)’=2[(sinx)’(lnx)+(sinx)(lnx)’] =2cosxlnx+2
已
知
x?0?lime??x?0?1xy?2sinx?lnx 求
y,答:
lime?01x
sinx x4=
limx?0x?sinxx?sin5x 2 已知y?f(ex)?ef(x),求y,
xsinxxsinx111xxlim?lim?lim?lim???fexex?f?x?x?0x?sinxx?0x?sin5xx?0x 5sin5xx?0x5sin5x663所以y'?xf?x???1?feex5xx5xdyxxf?x?xf?x?dy?fee?e?fee答:由链式法则,
dxdx????????(第一个重要极限)
3求?xex2dx
答:
ex2dx2原式??1x221x22?2?edx?2e?c
四、若2x?tan(x?y)??x?y0sec2tdt,求
dydx
另x-y=m, y=x-m, 对两边求导数,得到dy/dx = 1 - dm/dx 将y = x-m 带回原式,再两边对x求导。可得dm/dx 带回上式可得结果
五 求y?x,y?2x和y?x2所围平面图形的面积
解
:
?1?0??y?y?2??dy??4?1??y?y?2??dy????y2y2???1?3??y2y2?41?2?4??0???3?4??1?3?2??
高等数学模拟卷 2 一 求下列极限
1 lim1n??ncosn=0
?2 求lim2?x2?x??xlim2?x=1?2-2?xx?22?x=limx?22?x=? ?x?2??lim=-1x?2+2?x?1113 求limx?02x=lim??xlim?0?2x??x?02x???1 ??limx?0?2x?04求limx?2sinxx?0x?3sinx 解limx?2sinx3x?0x?3sinx=4
?二讨论f(x)??sinx?xx?0在 x=0 处的连续性??0x?0
答:因为f(x)在0点的左右极限都为1,不等于其在0点的函数值,所
以f(x)在0点不连续三 计算下列各题 1 y?ln[ln(lnx)]求y,
y,?1[ln(lnx)].[ln(lnx)]??111[ln(lnx)].lnx.x
2 xy?yx求y,,
解:lnxy?lnyxy.lnx?x.lnyy,.lnx?y1x?lny?y.y?.x
y???lnx?x??y???lny?yxlny?y?y??xlnx?xy
2x22四求limx??0costdtx?0sin10x
由于分子分母极限都为0,所以可以对分子分母分别求导,得到
Lim( 2x-2xcosx^4)/10sin^9(x)cosx 再对两边求导
五 求y2?2x?5和y?x?4所围平面图形的面积
解:?y2?2x?5y?x?4得交点?3,-1??7,3?
s??3y2?51133?1y?4?2dy?2y2?6y3?2y?1?163六 (x2?1)dydx?2xy?4x2
解:两边同除以(x2?1)得dy2xy4x2dx?(x2?1)?(x2?1)y?ce??p(x)dx=ce??2xx2?1dx=ce?lnx2?1?cx2?1
代入原方程得c?(x)?4x24x3?Dc(x)??4x2dx?43x3?D?y?3x2?1
高等数学模拟卷3
一 求下列极限 1 lim1n??ntgn 解:不存在
?x?limx?ax?a??xlima=?a+12 求x?ax?ax?a=limx?ax?a=? ?a?x??xlim?a-x?a??1?1113 求lime2x=lime2x????xlim?0?e2x??x?0x?0?1 ??limx?0?e2x?04limsinmxx?0sinnx?limmxx?0nx?mn
二已知f(x)???xx?0?x2x?0,讨论f(x)在x?0处的导数
解:Q?limf?0??x??f?0?x?0+?x??lim?xx?0+?x?1limf?0??x??f?0??0-?x??lim?x2x?0-?x?0 ?x?f(x)在x?0不可导三 计算下列各题
1、已知y?tan3(lnx)求y,
解:y??3tan2(lnx).sec2?lnx?.1x
2、已知y?f(x2),求y,
解: y?=f?(x2).2x
四 证明?a320xf(x)dx?12?a20xf(x)dx,(a?0),其中f(x)在
讨论的区间连续。
证明1Q?xf(x)dx??x2f(x2)dx2002令x2=u当x?0时u?0,x?a时,u?a2a32a解:令(arctany?x)?u则u??21.y??121?yy???u??1?.?1?y2??
?a0xf(x)dx????32a0121a21a2xf(x)dx??uf(u)du??xf(x)dx2202022五 计算反常积分
dx???1?x2;
1?y2则原方程为?u??1?.?1?y?=u1?u??1??uduu?1u?变量分离du?dxdxuu?1两边同时积分得:u?ln?u?1??x?c所以原方程的通解为:(arctany?x)+ln?arctany?x?1??x?c0??dx0??dxdx????解:???arctanx?arctanx???????????1?x2???1?x2?01?x2??0?2?2??
六 求(1?y2)dx?(arctany?x)dy的通解