选用以上适当的数,设计出计算⊙O 半径r的一种方案:
①你选用的已知数是 ; ②写出求解过程.(结果用字母表示)
25、(本题14分)
为宣传秀山丽水,在“丽水文化摄影节”前夕,丽水电 视台摄制组乘船往返于丽水(A)、青田(B)两码头,在
得 分 评卷人 A、B间设立拍摄中心C,拍摄瓯江沿岸的景色.往返过程中,船在C、B处均不停留,离开码头A、B的距离s(千米)与航行的时间t(小时)之间的函数关系如图所示.根据图象提供的信息,解答下列问题:
(1)船只从码头A→B,航行的时间为 小时、航行的速度为 千米/时;船只从码头B→A,航行
的时间为 小时、航行的速度为 千米/时; (2)过点C作CH∥t轴,分别交AD、DF于点G、H,
AC=x,GH=y,求出y与x之间的函数关系式; (3)若拍摄中心C设在离A码头25千米处, 摄制组
在拍摄
设
中心C分两组行动,一组乘橡皮艇漂流而下,另一组乘船到达码头B后,立即返回. ①求船只往返C、B两处所用的时间;
②两组在途中相遇,求相遇时船只离拍摄中心C 有多远. ,
浙江丽水市2005年初中毕业、升学考试试卷
数学参考答案和评分标准
一、选择题(本题有12小题,每小题4分,共48分) 题次 1 2 3 4 5 6 7 8 9 10 11 答案 A A D C D B A B B D B 二、填空题(本题有6小题,每小题5分,共30分) 313. 14. 3a 15. x(x+1)(x-1)
216. 矩形、菱形、正方形 17. C4H10 18. 115
三、解答题(本题有6小题,共72分) 以下各题必须写出解答过程. 19、(本题8分)
(1)解:原式=1-2 …………………………………………………6分 =-1. …………………………………………………2分
(2)解:原式=2x+2-x ……………………………………………4分
12 C = x+2. ………………………………………………4分
(若两小题都答,按得分高的题给分)
20、(本题8分)
解:设方程的另一根为x1,由韦达定理:2 x1=-6,
∴ x1=-3. …………………………………………………………4分 由韦达定理:-3+2= k+1,
∴k=-2. ……………………………………………………………4分 21、(本题8分)
(1)证明:∵∠A=∠D,∠C=∠B, …………………………………2分 ∴△PAC∽△PDB; ………………………………………2分
(2)解:由(1)△PAC∽△PDB,得 即(AC2S?PAC), ………………2分 =(S?PDBDBAC2AC)=4,∴=2. …………………………………………2分 DBDB
22、(本题10分) y 解:(1) 由已知:OC=0.6,AC=0.6, 得点A的坐标为(0.6,0.6), ……2分 C1 C2 C 5B A 代入y=ax2,得a=,………………2分 D2 3D1 5O x ∴抛物线的解析式为y=x2.………1分 3
(2)点D1,D2的横坐标分别为0.2,0.4,…………………………1分
5 代入y=x2,得点D1,D2的纵坐标分别为:
355 y1=×0.22≈0.07,y2=×0.42≈0.27, ………………………………1分
33 ∴立柱C1D1=0.6-0.07=0.53,C2D2=0.6-0.27=0.33, ……………2分 由于抛物线关于y轴对称,栅栏所需立柱的总长度为:
2(C1D1+ C2D2)+OC=2(0.53+0.33)+0.6≈2.3米. ……………1分 23、(本题12分)
解:(1)作图工具不限,只要点A、B、C在同一圆上;…………………4分 (2)作图工具不限,只要点A、B、C在同一平行四边形顶点上;…4分
ABD43,………………………………1分 (3)∵r=OB==cos30?316? ∴S⊙O=?r2=≈16.75, ……………………………1分 O3BCD12
又S平行四边形=2S△ABC=2××4×sin60o=83≈13.86,……1分 2 ∵S⊙O > S平行四边形 ∴选择建圆形花坛面积较大. …………………1分 24、(本题12分)
(1)证明:∵CD、CB是⊙O的切线,∴∠ODC=∠OBC=90°, …………2分 OD=OB,OC= OC, ……………………………………………………1分 ∴△OBC≌△ODC(HL); ………………………………………1分
(2)①选择a、b、c,或其中2个均给2分;
a2?b2 ②若选择a、b:由切割线定理:a=b(b+2r) ,得r=.
2b2
若选择a、b、c:
a2?2ac?b方法一:在Rt△EBC中,由勾股定理:(b+2r)+c=(a+c),得r=.
22
2
2
ab?2r?b?b2?8ac方法二:Rt△ODE∽Rt△CBE,?,得r=.
rc4
方法三:连结AD,可证:AD//OC,
abbc?,得r=. craca2?2ac若选择a、c:需综合运用以上的多种方法,得r=.
a?2c若选择b、c,则有关系式2r3+br2-bc2=0.
(以上解法仅供参考,只要解法正确均给6分) 25.(本题14分)
解:(1)3、25;5、15;……………………………………………………4分 (2)解法一:设CH交DE于M,由题意:
ME=AC=x ,DM=75–x, … ……………………………………1分 ∵GH//AF,△DGH∽△DAF , …………………………………1分
GHDMy75?x?∴ ,即?, ………………………………2分 AFDE8758∴ y=8?x. …………………………………………………1分
75解法二:由(1)知:A→B(顺流)速度为25千米/时,B→A(逆流)速度为15千米/时,y
即为船往返C、B的时间. 75?x75?x8?y=,即y=8?x.(此解法也相应给5分) 251575816 (3)①当x=25时,y=8??25?(小时).……………………2分
753 ②解法一:
设船在静水中的速度是a千米∕时,水流的速度是b千米∕时, a+b=25 a=20 即水流的速度是5 千米∕时.…………1分 即 a–b=15 b=5 解得
75?25 船到B码头的时间t 1==2小时,此时橡皮艇漂流了10千米.
25设船又过t2小时与漂流而下橡皮艇相遇,
则(5+15)t2=75–25–10,∴t2=2. ……………………………1分 ∴船只离拍摄中心C距离S=(t 1+ t2)×5=20千米. …………1分
解法二:
设橡皮艇从拍摄中心C漂流至P处与船返回时相遇,
CP5050?CP??得,∴CP=20千米. 52515 (此解法也相应给3分)