好文档 - 专业文书写作范文服务资料分享网站

空间向量在立体几何中的应用——夹角的计算习题 详细答案

天下 分享 时间: 加入收藏 我要投稿 点赞

精品

【巩固练习】 一、选择题

1. 设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( )

A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1)

2. 如图,ABCD—A1B1C1D1是正方体,B1E1=D1F1=( ) A.

A1B1,则BE1与DF1所成角的余弦值是415 178 17B.

1 2 C.D.

3 23. 如图,A1B1C1—ABC是直三棱柱,?BCA?90?,点D1、F1分别是A1B1、AC11的中点,若

BC?CA?CC1,则BD1与AF1所成角的余弦值是( )

A.

30 1030 15B.

1 2 C.D.

15 1084. 若向量a?(1,?,2)与b?(2,?1,2)的夹角的余弦值为,则??( )

9A.2 B.?2 C.?2或

2 55 D.2或?2 5515. 在三棱锥P-ABC中,AB?BC,AB=BC=PA,点O、D分别是AC、PC的中点,OP⊥

2底面ABC,则直线OD与平面PBC所成角的正弦值( )

A.

21 6B.

83 3感谢下载载

精品

C.

210 60D.

21030

6.(2015秋 湛江校级期末)在正四棱锥S—ABCD中,O为顶点在底面内的投影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC的夹角是( )

A.30° B.45° C.60° D.75°

17. 在三棱锥P-ABC中,AB?BC,AB=BC=PA,点O、D分别是AC、PC的中点,OP⊥

2底面ABC,则直线OD与平面PBC所成角的正弦值是( ) A.21 6B.83 3C.210 60D.210 30二、填空题

3,0?,直线l的一个方向向量为b=?111,,8.若平面?的一个法向量为n??3,?,则l与?所成角的余弦值为 _.

9.正方体ABCD?A1B1C1D1中,E、F分别为AB、CC1的中点,则异面直线EF与A1C1所成角的大小是______.

10. 已知三棱锥S?ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面

ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为 .

11. 如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB?AE,FA?FE,?AEF?45,则平面BDF和平面ABD的夹角余弦值

?是_______.

感谢下载载

精品

三、解答题

12. 如图,点P在正方体ABCD?A1B1C1D1的对角线D1B上,∠PDA?60?.

(Ⅰ)求DP与C1C所成角的大小;

(Ⅱ)求DP与平面A1ADD1所成角的大小.

13. 如图,四棱锥F?ABCD的底面ABCD是菱形,其对角线AC?2,BD?2,AE,CF都与平面ABCD垂直,AE?1, CF?2,求平面ABF与平面ADF的夹角大小.

14. 如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C?CD,如图(2).

(1)求证:A1C⊥平面BCDE;

(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;

(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.

感谢下载载

精品

15.(2016 浙江理)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(Ⅰ)求证:EF⊥平面ACFD;

(Ⅱ)求二面角B-AD-F的平面角的余弦值.

【答案与解析】 1.【答案】B 【解析】排除法.

平面的法向量与平面内任意直线的方向向量垂直,即它们的数量积为零.

排除A,C,D,选项为B.

感谢下载载

精品

2.【答案】A

【解析】设正方体的棱长为1,以D为原点建立如图所示的空间直角坐标系D-xyz,则

31B(1,1,0),E1(1,,1),D(0,0,0),F1(0,,1).

44uuur31所以,BE1?(1,,1)?(1,1,0)?(0,?,1),

44uuuur11DF1?(0,,1)?(0,0,0)?(0,,1),

44uuuruuuur1717BE1?,DF1?,

44uuuruuuur1115BE1?DF1?0?0?(??)?1?1?.

4416所以,

uuuruuuuruuuruuuurBE?DF1cos?BE1,DF1??uuur1uuuurBE1?DF115

1516??.171717?44因此,BE1与DF1所成的角的余弦值是

3.【答案】A

【解析】如图所示,以C为原点建立的空间直角坐标系, 则A?1,0,0?,B?0,1,0?,C1?0,0,1?,A1?1,0,1?,B1?0,1,1?, ?11??1? 由中点公式可知,D1?,,,1?F1?,01,?,

?22??2?uuuur?11?uuur?1? BD1??, ,,1?AF1?? ,01,?,

222????15. 171-?1uuuuruuur304AF1?? cosBD1,.

1035g244.【答案】C

b=abcosa,b可得,55?2?108? 4?0,即???2??55? 2??0, 【解析】由ag感谢下载载

空间向量在立体几何中的应用——夹角的计算习题 详细答案

精品【巩固练习】一、选择题1.设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是()A.(-1,-2,5)B.(-1,1,-1)C.(1,1,1)D.(1,-1,-1)2.如图,ABCD—A1B1C1D1是正方体,B1E1=D1
推荐度:
点击下载文档文档为doc格式
7fuk42glu0565jb3urou8mpoj7ocb000zos
领取福利

微信扫码领取福利

微信扫码分享