好文档 - 专业文书写作范文服务资料分享网站

通用版小学数学典型应用题1 含答案(附答案) 

天下 分享 时间: 加入收藏 我要投稿 点赞

解 要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。 36、30、48的最小公倍数是720。

答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。

例3 一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?

解 相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。

所以,至少应植树 (60+72+96+84)÷12=26(棵)

答:至少要植26棵树。

例4 一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。

解 如果从总数中取出1个,余下的总数便是4、5、6的公倍数。因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为

60×3+1=181(个) 答:棋子的总数是181个。 29 最值问题

【含义】 科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。

【数量关系】 一般是求最大值或最小值。

【解题思路和方法】 按照题目的要求,求出最大值或最小值。

例1 在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?

解 先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。这样做,用的时间最少,为9分钟。

答:最少需要9分钟。

例2 在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?

解 我们采用尝试比较的方法来解答。

集中到1号场总费用为 1×200×10+1×400×40=18000(元) 集中到2号场总费用为 1×100×10+1×400×30=13000(元)

集中到3号场总费用为 1×100×20+1×200×10+1×400×10=12000(元) 集中到4号场总费用为 1×100×30+1×200×20+1×400×10=11000(元) 集中到5号场总费用为 1×100×40+1×200×30=10000(元) 经过比较,显然,集中到5号煤场费用最少。 答:集中到5号煤场费用最少。

例3 北京和上海同时制成计算机若干台,北京可调运外地10 台,上海可调运外地4台。现决定给重庆调运8台,给武汉调运6台, 若每台运费如右表,问如何调运才使运费最省? 解 北京调运到重庆的运费最高,因此,北京 往重庆应尽量少调运。这样,把上海的4台全都调

往重庆,再从北京调往重庆4台,调往武汉6台,运费就会最少,其数额为 500×4+800×4+400×6=7600(元)

答:上海调往重庆4台,北京调往武汉6台,调往重庆4台,这样运费最少。

30 列方程问题

【含义】 把应用题中的未知数用字母Χ代替,根据等量关系列出含有未知数的等式——方程,通过解这个方程而得到应用题的答案,这个过程,就叫做列方程解应用题。

【数量关系】 方程的等号两边数量相等。

【解题思路和方法】 可以概括为“审、设、列、解、验、答”六字法。

(1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。 (2)设:把应用题中的未知数设为Χ。

(3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。 (4)解;求出所列方程的解。

(5)验:检验方程的解是否正确,是否符合题意。 (6)答:回答题目所问,也就是写出答问的话。

同学们在列方程解应用题时,一般只写出四项内容,即设未知数、列方程、解方程、答语。设未知数时要在Χ后面写上单位名称,在方程中已知数和未知数都不带单位名称,求出的Χ值也不带单位名称,在答语中要写出单位名称。检验的过程不必写出,但必须检验。

北京 上海 重庆 800 500 武汉 400 300

例1 甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人? 解 第一种方法:设乙班有Χ人,则甲班有(90-Χ)人。 找等量关系:甲班人数=乙班人数×2-30人。 列方程: 90-Χ=2Χ-30

解方程得 Χ=40 从而知 90-Χ=50 第二种方法:设乙班有Χ人,则甲班有(2Χ-30)人。 列方程 (2Χ-30)+Χ=90

解方程得 Χ=40 从而得知 2Χ-30=50 答:甲班有50人,乙班有40人。

例2 鸡兔35只,共有94只脚,问有多少兔?多少鸡?

解 第一种方法:设兔为Χ只,则鸡为(35-Χ)只,兔的脚数为4Χ个,鸡的脚数为2(35-Χ)个。根据等量关系“兔脚数+鸡脚数=94”可列出方程 4Χ+2(35-Χ)=94 解方程得 Χ=12 则35-Χ=23

第二种方法:可按“鸡兔同笼”问题来解答。假设全都是鸡, 则有 兔数=(实际脚数-2×鸡兔总数)÷(4-2) 所以 兔数=(94-2×35)÷(4-2)=12(只) 鸡数=35-12=23(只)

答:鸡是23只,兔是12只。

例3 仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?

解 第一种方法:求出甲乙两车一次共可运的袋数,再减去甲车一次运的袋数,即是所求。 940÷4-125=110(袋)

第二种方法:从总量里减去甲汽车4次运的袋数,即为乙汽车共运的袋数,再除以4,即是所求。 (940-125×4)÷4=110(袋)

第三种方法:设乙汽车每次运Χ袋,可列出方程

940÷4-Χ=125

解方程得 Χ=110

第四种方法:设乙汽车每次运Χ袋,依题意得

(125+Χ)×4=940 解方程得 Χ=110

答:乙汽车每次运110袋。

一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。甲乙两地相距多少千米?

解:把全部路程看作单位1,那么客车到达终点行了全程,也就是单位1。当客车到达乙地时,货车行了全程的八分之七,相同的时间,路程比就是速度比。由此我们可以知道客车货车的速度比=1:7/8=8:7,所以客车行的路程是货车的8/7倍 所以当客车行了全程的4/7时, 货车行了全程的(4/7)/(8/7)=1/2 那么甲乙两地相距180/(1/2)=360千米, 1/2就是180千米的对应分率

分析:此题中运用了单位1,用到了比例问题,我们要熟练掌握比例,对于路程、速度和时间之间的关系,一定要清楚,在速度或时间一定时,路程都和另外一个量成正比例,当路程一定时,速度和时间成反比例,这个是基本常识。

43、甲、乙两车同时从A、B两地相对开出,2小时相遇。相遇后两车继续前行,当甲车到达B地时,乙车离A地还有60千米,一直两车速度比是3:2。求甲乙两车的速度。

解:将全部路程看作单位1,速度比=路程比=3:2,也就是说乙行的路程是甲的2/3 那么甲到达B地时,行了全部路程,乙行了1×2/3=2/3,此时距离终点A还有1-2/3=1/3

那么全程=60/(1/3)=180千米,速度和=180/2=90千米/小时,甲的速度=90×3/(3+2)=54千米/小时 乙的速度=90-54=36千米/小时

从甲地去乙地,如车速比原来提高1/9,就可比预定的时间提前20分钟赶到,如先按原速行驶72千米,再将车速比原来提高1/3,就比预定时间提前30分钟赶到。甲乙两地相距多少千米? 解:20分钟=1/3小时。30分钟=1/2小时

因为路程一定,时间和速度成反比,那么原来的车速和提高1/9后的车速之比为1:(1+1/9)=9:10 那么时间比为10:9,将原来的时间看作单位1,那么提速1/9后的时间为1x9/10=9/10 所以原来需要的时间为(1/3)/(1-9/10)=10/3小时

第二次行驶完72千米后,原来的速度和提高后的速度比为1:(1+1/3)=3:4,那么时间比为4:3 将行驶完72千米后的时间看作单位1,那么这一段用的时间为(1/2)/(1-3/4)=2小时 那么原来行驶72千米用的时间=10/3-2=4/3小时,原来的速度=72/(4/3)=54千米/小时 甲乙两地相距=54×10/3=180千米

14、清晨4时,甲车从A地,乙车从B地同时相对开出,原计划在上午10时相遇,但在6时30分,乙车因故停在中途C地,甲车继续前行350千米在C地与乙车相遇,相遇后,乙车立即以原来每小时60

15、千米的速度向A地开去。问:乙车几点才能到达A地? 解:原来的相遇时间=10-4=6小时,乙的速度=60千米/小时 BC距离=60×2.5=150千米(从凌晨4时到6时30分是2.5小时) 原来相遇时乙应该走的距离=60×6=360千米

甲比原来夺走360-150-210千米,那么甲行驶6-2.5=3.5小时应该行驶的距离=350-210=140千米 所以甲的速度=140/3.5=40千米/小时,那么AB距离=(40+60)×6=600千米,AC距离=600-150=450千米

实际相遇的时间=450/40=11.25小时=11小时15分钟,那么相遇时的时间是15小时15分 乙到达A地需要的时间=450/60=7.5小时=7小时30分 所以乙到达A地时间为15小时15分+7小时30分=22时45分

9、AB两地相距60千米,甲车比乙车先行1小时从A地出发开往B地,结果乙车还比甲车早30分到达B地,甲乙两车的速度比是2:5,求乙车的速度。

如果甲不比乙车先行1小时,那么乙要比甲车早1+30/60=1.5小时到达B地 甲乙的速度比=2:5,那他们用的时间比为5:2 将甲用的时间看作单位1,那么乙用的时间是甲的2/5 甲比乙多用1-2/5=3/5

所以甲行完全程用的时间为1.5/(3/5)=2.5小时,乙行完全程用的时间=2.5-1.5=1小时 那么乙车的速度=60/1=60千米/小时

10、小刚很小明同时从家里出发相向而行。小刚每分钟走52米,小明每分钟走70米,两人在途中A处相遇。若小刚提前4分钟出发,且速度不变,小明每分钟走90米,则两人仍在A处相遇。小刚和小明两人的家相距多少米?

解:两次相遇小明走的路程一样,那么两次相遇小明的速度比=70:90=7:9 时间比就是速度比的反比,所以两次相遇的时间比为9:7

将第一次相遇的时间看做单位1那么第二次相遇小明用的时间为7/9

第一次比第二次多用的时间为1-7/9=2/9那么第一次用的时间为4/(2/9)=18分钟 所以小刚和小明的家相距(52+70)×18=2196米 方程:设第一次相遇时间为t分

90×[(52t-52x4)/52]=70a t=18分钟(过程从略) 所以小刚和小明的家相距(52+70)×18=2196米

通用版小学数学典型应用题1 含答案(附答案) 

解要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。36、30、48的最小公倍数是720。答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。例3一个四边形广场,边长分别为60米,72米,96米,84米
推荐度:
点击下载文档文档为doc格式
7fqaa9a37f9vfqx3d4pq7px008twlp015gc
领取福利

微信扫码领取福利

微信扫码分享