(2019年安徽23题)
23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.
(1)求证:△PAB∽△PBC; (2)求证:PA=2PC;
(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2?h3.
【分析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论; (2)由(1)的结论得出
,进而得出
,即可得出结论;
,即h3=2h2,再由△PAB∽△PBC,
(3)先判断出Rt△AEP∽Rt△CDP,得出判断出
,即可得出结论.
【解答】解:(1)∵∠ACB=90°,AB=BC, ∴∠ABC=45°=∠PBA+∠PBC 又∠APB=135°, ∴∠PAB+∠PBA=45° ∴∠PBC=∠PAB
又∵∠APB=∠BPC=135°, ∴△PAB∽△PBC
(2)∵△PAB∽△PBC ∴
在Rt△ABC中,AB=AC, ∴∴
1 / 91
∴PA=2PC
(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E, ∴PF=h1,PD=h2,PE=h3,
∵∠CPB+∠APB=135°+135°=270° ∴∠APC=90°, ∴∠EAP+∠ACP=90°,
又∵∠ACB=∠ACP+∠PCD=90° ∴∠EAP=∠PCD, ∴Rt△AEP∽Rt△CDP, ∴∴h3=2h2
∵△PAB∽△PBC, ∴
, ,即
,
∴∴
.
即:h12=h2?h3.
【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.
2 / 91
(2019年北京27题) 27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON. (1)依题意补全图1;
(2)求证:∠OMP=∠OPN;
(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.
【分析】(1)根据题意画出图形.
(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证. (3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD=OC=OP+PC=2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=
a+a=
+1,
求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP. 【解答】解:(1)如图1所示为所求.
(2)设∠OPM=α,
∵线段PM绕点P顺时针旋转150°得到线段PN ∴∠MPN=150°,PM=PN
∴∠OPN=∠MPN﹣∠OPM=150°﹣α ∵∠AOB=30°
∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α ∴∠OMP=∠OPN
(3)OP=2时,总有ON=QP,证明如下:
过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2 ∴∠NCP=∠PDM=∠PDQ=90° ∵∠AOB=30°,OP=2
3 / 91