导轨与导体棒问题
一、单棒问题
【典例1】如图所示,AB杆受一冲量作用后以初速度v0=4m/s沿水平面内的固定轨道运动,经一段时间后而停止.AB的质量为m=5g,导轨宽为L=0.4m,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10C,求:上述过程中 (g取10m/s)(1)AB杆运动的距离;(2)AB杆运动的时间; (3)当杆速度为2m/s时,其加速度为多大? 【答案】(1) 0.1m;(2)0.9s;(3)12m/s. (2)根据动量定理有:﹣(F安t+μmgt)=0﹣mv0 而F安t=BLt=BLq,得:BLq+μmgt=mv0, 解得:t=0.9s
(3)当杆速度为2m/s时,由感应电动势为:E=BLv 安培力为:F=BIL,而I=
然后根据牛顿第二定律:F+μmg=ma 代入得:
解得加速度:a=12m/s,
25.(20分) 如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。
如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。其他电阻忽略不计,重力加速度为g。 (1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ;
(2)在水平导轨上进行实验,不考虑摩擦及空气阻力。
①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象)
②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo从如图(e)通过距离D后的速度v。
【典例3】 如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他
2
2
2
﹣2
A v0 B R B
电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动.则
( )
A.随着ab运动速度的增大,其加速度也增大 B.外力F对ab做的功等于电路中产生的电能
C.当ab做匀速运动时,外力F做功的功率等于电路中的电功率 D.无论ab做何种运动,它克服安培力做的功一定等于电路中产生的电能 【答案】CD
【典例4】 一个闭合回路由两部分组成,如图所示,右侧是电阻为r 的圆形导线,置于竖直方向均匀变化的磁场B1中,左侧是光滑的倾角为θ的平行导轨,宽度为d,其电阻不计.磁感应强度为B2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m、电阻为R的导体棒此时恰好能静止在导轨上,分析下述判断正确的是 ( )
A.圆形导线中的磁场,可以方向向上且均匀增强,也可以方向向下且均匀减弱 B.导体棒ab受到的安培力大小为mgsin θ C.回路中的感应电流为
mgsin θ B2dm2g2sin2θD.圆形导线中的电热功率为(r+R) 22
B2 d【答案】ABC
【解析】根据左手定则,导体棒上的电流从b到a,根据电磁感应定律可得A项正确;根据共点力平衡知识,导体棒ab受到的安培力大小等于重力沿导轨向下的分力,即mgsin θ,B项正确;根据mgsin θ=
mgsin θmgsin θ2m2g2sin2 θ2
B2Id,解得I=,C项正确;圆形导线的电热功率P=Ir=()r=r,D项错误. 2
B2dB2dB22d【典例4】如图甲所示,两根足够长平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为α,金属棒
ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m。导轨处于匀强磁场中,磁
场的方向垂直于导轨平面斜向上,磁感应强度大小为B。金属导轨的上端与开关S、定值电阻R1和电阻箱
R2相连。不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g。现在闭合开关S,将金属棒由静止释
放。
(1) 判断金属棒ab中电流的方向;
(2) 若电阻箱R2接入电路的阻值为0,当金属棒下降高度为h时,速度为v,求此过程中定值电阻上产生
的焦耳热Q;
(3) 当B=0.40 T,L=0.50 m,α=37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系,如图乙所示。取g=10 m/s,sin 37°=0.60,cos 37°=0.80。求R1的阻值和金属棒的质量m。 12
【答案】 (1)b→a (2)mgh-mv (3)2.0 Ω 0.1 kg
2
(3)金属棒达到最大速度vm时,切割磁感线产生的感应电动势:E=BLvm 由闭合电路的欧姆定律得:I=
2
ER1+R2
从b端向a端看,金属棒受力如图所示
金属棒达到最大速度时,满足:mgsin α-BIL=0 由以上三式得vm=
mgsin α(R2+R1) B2L2
60-30-1-1-1-1
由图乙可知:斜率k= m·s·Ω=15 m·s·Ω,纵轴截距v=30 m/s
2所以
mgsin αmgsin αR=v,=k 1
B2L2B2L2
解得R1=2.0 Ω,m=0.1 kg
24.如图所示,相距L=0.4 m、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R=0.15 Ω的电阻
相连,导轨处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直于导轨平面向里。质量m=0.1 kg、电阻r=0.05 Ω的金属棒置于导轨上,并与导轨垂直。t=0时起棒在水平外力F作用下以初速度v0=2 m/s、加速度a=1 m/s沿导轨向右匀加速运动。求: (1)t=2 s时回路中的电流; (2)t=2 s时外力F大小; (3)前2 s内通过棒的电荷量。 【答案】(1)4 A (2)0.9 N (3)6 C
【解析】(1)t=2 s时,棒的速度为:v1=v0+at=2+1×2=4 m/s 此时由于棒运动切割产生的电动势为:E=BLv1=0.5×0.4×4 V=0.8 V 由闭合电路欧姆定律可知,回路中的感应电流:I?(2)对棒,根据牛顿第二定律得:F?BIL=ma 解得F=BIL+ma=0.5×4×0.4+0.1×1=0.9 N
2
E0.8?A?4AR?r0.15?0.05 121at?2?2??1?4?6m22 Δ?根据法拉第电磁感应定律得:E?Δt E根据闭合电路欧姆定律得I?R?r Δ?BLx通过棒的电荷量:q?IΔt???6CR?rR?r (3)t=2 s时棒的位移x?v0t?【名师点睛】(1)棒向右匀加速运动,由速度时间公式求出t=1 s时的速度,由E=BLv求出感应电动势,由闭合电路欧姆定律求解回路中的电流。
(2)根据牛顿第二定律和安培力公式求解外力F的大小。
(3)由位移时间公式求出第2 s内棒通过的位移大小,由法拉第电磁感应定律、欧姆定律和电荷量公式求解电荷量。
2.如图所示,两根足够长平行金属导轨MN、PQ固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R=3 Ω的定值电阻,下端开口,轨道间距L=1 m.整个装置处于磁感应强度B=2 T的匀强磁场中,磁场方向垂直斜面向上.质量m=1 kg的金属棒ab置于导轨上,ab在导轨之间的电阻r=1 Ω,电路中其余电阻不计.金属棒ab由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab与导轨间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g=10 m/s2.
(1)求金属棒ab沿导轨向下运动的最大速度vm;
(2)求金属棒ab沿导轨向下运动过程中,电阻R上的最大电功率PR;
(3)若从金属棒ab开始运动至达到最大速度过程中,电阻R上产生的焦耳热总共为1.5 J,求流过电阻R的总电荷量q.
解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度vm.
由牛顿第二定律得mgsin θ-μmgcos θ-F安=0 F安=BIL,I=
BLvm
,解得vm=2.0 m/s R+r
(2)金属棒以最大速度vm匀速运动时,电阻R上的电功率最大,此时PR=I2R,解得PR=3 W
(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x,由能量守恒定律得
12
mgxsin θ=μmgxcos θ+QR+Qr+2mvm QRR
根据焦耳定律Q=r,解得x=2.0 m
r根据q=I Δt,I=
R+rE
ΔΦBLx
E=Δt=Δt,解得q=1.0 C 答案:(1)2 m/s (2)3 W (3)1.0 C
26.CD、EF是水平放置的电阻可忽略的光滑平行金属导轨,两导轨距离水平地面高度为H,导轨间距为L,
在水平导轨区域存在方向垂直导轨平面向上的有界匀强磁场(磁场区域为CPQE),磁感应强度大小为
B,如图所示。导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R。将一阻
值也为R的导体棒从弯曲轨道上距离水平金属导轨高度h处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端水平距离x处。已知导体棒质量为m,导体棒与导轨始终接触良好,重力加速度为g。求:
(1)电阻R中的最大电流和整个电路中产生的焦耳热。 (2)磁场区域的长度d。
mgx22mR?g【答案】(1)Q?mgh?(2)d?22?2gh?x4H BL?2H?????
【解析】(1)由题意可知,导体棒刚进入磁场的瞬间速度最大,产生的感应电动势最大,感应电流最大
由机械能守恒定律有:mgh?解得:v1?2gh
12mv12
由法拉第电磁感应定律得:E?BLv1由闭合电路欧姆定律得:I?联立解得:I?E2R
BL2gh2R
12gt2
由平抛运动规律可得:x?v2t,H?解得:v2?xg2H 由能量守恒定律可知整个电路中产生的焦耳热为:
【名师点睛】对于电磁感应问题两条研究思路:一条从力的角度,重点是分析安培力作用下导体棒的平衡问题,根据平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。
【典例9】如图所示,水平放置的足够长平行导轨MN、PQ的间距为L=0.1m,电源的电动势E=10V,内阻r=0.1Ω,金属杆EF的质量为m=1kg,其有效电阻为R=0.4Ω,其与导轨间的动摩擦因素为μ=0.1,整个装置处于竖直向上的匀强磁场中,磁感应强度B=1T,现在闭合开关,求: