好文档 - 专业文书写作范文服务资料分享网站

高等数学试题

天下 分享 时间: 加入收藏 我要投稿 点赞

第一章 函数 极限 连续 姓名 学号

§1函数

1.求下列函数的定义域:

(1) y?sin4?x2 (2) y?1x2?4x?3?x?2

(3)y?arccoslnx10; (4) y?tg(x?1);

(5)y?3?x?arctg1x; (6) y?sinx?16?x2

?2. 设f(x)??2x,?1?x?0,?2,0?x?1, 求f(3),f(2),f(0),f(1),f(?1). ??x?1,1?x?3,22

3.设f(x)?x,g(x)??x2?4x?3,求f?g(x)?的定义域。

1

?1,?4.设f(x)??0,???1,

x?1,x?1, g(x)?ex,求f?g(x)?,g?f(x)?。. x?1,5.设f(x)的定义域是?0,1?,求f(sinx)的定义域。

6.设f(x)??

7. 已知f(x)是二次多项式,且f(x?1)?f(x)?8x?3,求f(x)。

2

?2x?1,x?0,?x?4,x?0,2求f(x?1)?f(x?1)。

姓名 学号 8.设f(x)为奇函数,g(x)为偶函数,试证:f?f(x)?为奇函数,g?f(x)? 为偶函数。

f(x)?1?x29..证明1?x4在(??,??)上有界。

10.求下列函数的反函数:

(1)y?ln(x?2)?1;

(2)y?2x2x?1;

(3)y???x?1,x?0,?x3,x?0.

3

11.将下列函数拆开成若干基本初等函数的复合:

(1)y?sin(1?2x);

(2)y?10(2x?1);

(3)y?arctgtg(a2?ex)。

12.一球的半径为r,作外切于球的正圆锥,试将其体积表示为高的函数,并说明定义域。

4

23??2

§2数列 极限 姓名 学号

数列极限定义及性质

1. 是非题,若非,请举例说明。

(1) 设在常数a的无论怎样小的?邻域内存在着{xn}的无穷多点,则?xn?的极限为

a。( )

(2) 若limn??x2n?a,limn??x2n?1?a,则limn??xn?a。(

(3) 设xn?0.11?1(n个),则lim1n??xn?9。( )

2.用数列极限证明:

(1)lim2n?1n??4n?3?12;

(2)limn??(n?1?n)?0

5

高等数学试题

第一章函数极限连续姓名学号§1函数1.求下列函数的定义域:(1)y?sin4?x2(2)y?1x2?4x?3?x?2(3)y?arccoslnx10;(
推荐度:
点击下载文档文档为doc格式
7evw345gws34ka295j7z7yqpo85se700d5a
领取福利

微信扫码领取福利

微信扫码分享