于极值点偏移问题,前文已多次提到其解题策略是将多元问题(无论含参数或不含参数)转化为一元问题,过程都需要构造新函数. 那么,关于新函数的选取,不同的转化方法就自然会选取不同的函数. ★已知函数f?x??e?ax有两个不同的零点x1,x2,其极值点为x0.
x(1)求a的取值范围;
(2)求证:x1?x2?2x0; (3)求证:x1?x2?2; (4)求证:x1x2?1.
x解:(1)f??x??e?a,若a?0,则f??x??0,f?x?在R上单调递增,
[来源学。科。网]
f?x?至多有一个零点,舍去;则必有a?0,得f?x?在???,lna?上递减,学*科网
在?lna,???上递增,要使f?x?有两个不同的零点,则须有f?lna??0?a?e.
(严格来讲,还需补充两处变化趋势的说明:当x???时,f?x????;当x???时,f?x????).
(3)由所证结论可以看出,这已不再是f?x?的极值点偏移问题,谁的极值点会是1呢?回到题设条件:
(ii)构造函数G?x??g?x??g?2?x?,则
[来源学。科。网]
G??x??g??x??g??2?x?ex?x?1?e2?x?1?x?学*科网 ??22x?2?x??exe2?x???x?1??2???x?2?x?2???
(4)(i)同上;
(ii)构造函数G?x??g?x??g??1??,则 ?x?G??x??g??x??1?1?g???x2?x?1?1?ex??1?xe?x?1?1?x? ???2x2x2?1????x?1ex?xex??x?1??x2??当0?x?1时,x?1?0,但因式e?xex的符号不容易看出,引进辅助函数??x??ex?xex,则
x11???x??ex???1?e,当x??0,1?时,???x??0,得??x?在?0,1?上递增,有??x????1??0,则
x1x?1????1?G??x??0,得G?x?在?0,1?上递增,有G?x??G?1??0,即g?x??g???0?x?1?;
?x?(iii)将x1代入(ii)中不等式得g?x1??g?x2??g??1?1x?1,又,?1,g?x?在?1,???上递增,?2xx?1?1