耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用
效率的影响
赵亚丽;薛志伟;郭海斌;穆心愿;李潮海
【期刊名称】《中国农业科学》 【年(卷),期】2014(000)017
【摘要】Objective]Huang-Huai-Hai area is one of the most important areas that produce food crops. Frequent drought and flood are the main limiting factors for crop production, and the soil compaction, low topsoil and low water holding capacity are also the main factors causing the low and unstable yields of winter wheat and summer maize. Tillage and straw returning are two effective ways to reduce soil compaction, enhance water holding capacity and water use efficiency. The objective of the experiment was to study the effects of tillage, straw returning and their interaction on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system.[Method]The experiment was conducted by a combination of different tillage ways and straw managements. Soil water consumption amount, soil water reduction amount, soil evaporation, grain yield and water use efficiency were analyzed by using six treatments which were conventional tillage with all straw returning, conventional tillage with no straw returning, deep tillage with all straw returning, deep tillage with no straw returning, subsoil tillage with all straw returning, subsoil tillage
with no straw returning in the winter wheat and summer maize rotation system. The effects of tillage, straw returning and their interaction on water consumption characteristics and water use efficiency were analyzed.[Result]The results showed that, there were significant effects of tillage and straw returning on soil bulk density, soil water consumption amount, soil water reduction amount, soil evaporation, grain yield and water use efficiency. Compared with conventional tillage, deep tillage and subsoil tillage mainly decreased soil bulk density at 20-40 cm soil depth, increased the water consumption and soil water reduction amount at 0-100 cm soil depth of winter wheat and summer maize, while decreased the water consumption during fallow periods. Moreover, deep tillage and subsoil tillage also decreased soil evaporation during the growth period of summer maize. Deep tillage increased, but subsoil tillage decreased the soil evaporation during the growth period of winter wheat. Straw returning also decreased the soil bulk density, increased soil water reduction amount, increased soil water consumption amount during the growth period of winter wheat, but decreased the soil water consumption amount during summer maize growth period and fallow period. Moreover, straw returning increased soil water consumption, increased soil evaporation during the growth period of winter wheat, but decreased soil evaporation during the growth period of summer maize. Compared with the conventional
tillage, the total grain yield of deep tillage and subsoil tillage increased by 10.7% and 9.8%, the water use efficiency increased by 8.8% and 6.3%. The total grain yield and water use efficiency of straw returning were 6.3% and 7.6% higher than the no straw returning treatment, respectively. A significant interaction between tillage system and straw returning was observed in soil water cosumption characteres, grain yield and water use efficiency of winter wheat and summer maize. Compared with conventional tillage with no straw returning, the total soil water consumption amounts of deep tillage with straw returning and subsoil tillage with straw returning increased by 3.3% and 2.4%, the soil water consumption amounts during the growth period of winter wheat and summer maize increased by 4.2% and 3.3%, while the soil water consumption amounts during the fallow period decreased by 7.0% and 9.9%. Moreover, the grain yields of deep tillage with straw returning and subsoil tillage with straw returning increased by 18.0% and 19.3%, the water use efficiency increased by 15.9% and 15.1%.[Conclusion]In the six treatments, deep tillage with straw returning and subsoil tillage with straw returning showed the highest total grain yield and water use efficiency, and there was no significant difference in grain yield and water use efficiency between deep tillage with straw returning and subsoil tillage with straw returning. Therefore, it was concluded that deep tillage or subsoil tillage with straw returning is the most