题目部分,(卷面共有100题,405.0分,各大题标有题量和总分) 一、选择 (16小题,共53.0分) (2分)[1] (3分)[2]二重积分 (A)
??xydxdy (其中D:0≤y≤x,0≤x≤1)的值为
2
D1111 (B) (C) (D) 612242xy??dxdy?= D 答 ( ) (3分)[3]若区域D为0≤y≤x2,|x|≤2,则
(A)0; (B)
3264 (C) (D)256 33 答 ( )
(3分)[4]设D1是由ox轴,oy轴及直线x+y=1所圈成的有界闭域,f是区域D:|x|+|y|≤1上的连续函数,则二重积分
??Df(x2,y2)dxdy?__________??f(x2,y2)dxdy
D1(A)2 (B)4 (C)8 (D)
1 2 答 ( ) (3分)[5]设f(x,y)是连续函数,则二次积分(A)(B)(C)(D)
?0?1dx?1?x2x?1f(x,y)dy=
?dy?01y?1?1y?1f(x,y)dx??dy?12y2?1?1f(x,y)dx
?10dy??1f(x,y)dx
?dy?01y?1?1f(x,y)dx??dy?12?y2?1?1f(x,y)dx
?20dy??y2?1?1f(x,y)dx
答 ( ) (3分)[6] 设函数f(x,y)在区域D:y2≤-x ,y≥x2上连续,则二重积分化累次积分为 (A)(C)
??f(x,y)dxdy可
D?0?11dx?x2?xf(x,y)dy (B)?dx??1100x2?xy2yf(x,y)dy
f(x,y)dx
?dy?0?y2?yf(x,y)dx (D)?dy?3?y2 答 ( ) (3分)[7]设f(x,y)为连续函数,则二次积分
?dy?0112y2f(x,y)dx可交换积分次序为
(A)(B)
?dx?012x02xf(x,y)dy??dx?1233?x201f(x,y)dy
33?x2?1201dx?03?x22xf(x,y)dy??1dx?f(x,y)dy??dx?2024f(x,y)dy
(C)(D)
?dx?0f(x,y)dy
??20d??2cos?f(rcos?,rsin?)rdr
sin2?3 答 ( ) (3分)[8]设f(x,y)为连续函数,则积分
?dx?01x20f(x,y)dy??dx?122?y22?x0f(x,y)dy
可交换积分次序为 (A)(B)(C)(D)
?dy?01y0f(x,y)dx??dy?10f(x,y)dx
?dy?01x20f(x,y)dx??dy?122?x0f(x,y)dx
?dy?012?yy2?xf(x,y)dx f(x,y)dx
?dy?01x2 答 ( ) (4分)[9]若区域D为(x-1)2+y2≤1,则二重积分(A)
??f(x,y)dxdy化成累次积分为
D??0d??2cos?0F(r,?)dr (B)?d?????2cos?0F(r,?)dr
?(C)
?2??d??22cos??0F(r,?)dr (D)2?02d??02cos?F(r,?)dr
其中F(r,θ)=f(rcosθ,rsinθ)r.
答 ( ) (3分)[10]若区域D为x2+y2≤2x,则二重积分
?2cos???(x?y)Dx2?y2dxdy化成累次积分为
(A)
??d??2?20(cos??sin?)2rcos?rdr
2cos?(B)
??0(cos??sin?)d???00r3dr
r3dr
(C)2?2(cos??sin?)d???2cos?0(D)2??(cos??sin?)d??2?22cos?0r3dr
答 ( ) (4分)[11]设I1?777[ln(x?y)]dxdy,I?(x?y)dxdy,I?sin23??????(x?y)dxdy其中D是DDD由x=0,y=0,x?y?1 ,x+y=1所围成的区域,则I1,I2,I3的大小顺序是 2 (A)I1<I2<I3; (B)I3<I2<I1; (C)I1<I3<I2; (D)I3<I1<I2.
答 ( ) (5分)[12]设I?dxdy,则I满足 22??1?cosx?sinyx?y?12?I?2 (B)2?I?3 31(C)D?I? (D)?1?I?0
2(A)
答 ( ) (4分)[13]设x?y?1其中D是由直线x=0,y=0,2及x+y=1所围成的区域,则I1,I2,
I3的大小顺序为
(A)I3<I2<I1; (B)I1<I2<I3; (C)I1<I3<I2; (D)I3<I1<I2.
答 ( ) (3分)[14]设有界闭域D1与D2关于oy轴对称,且D1∩D2=?,f(x,y)是定义在D1∪D2上的连续函数,则二重积分
??f(x,y)dxdy?
D2(A)2??f(x,y)dxdy (B)4??f(x,y)dxdy
D1D222(C)4??D1f(x2,y)dxdy (D)
12f(x,y)dxdy ??2D2 答 ( )
(3分)[15]若区域D为|x|≤1,|y|≤1,则
cos(xy)xesin(xy)dxdy? ??D-
(A) e; (B) e1;
(C) 0; (D)π.
答 ( ) (4分)[16]设D:x2+y2≤a2(a>0),当a=___________时,
??Da2?x2?y2dxdy??.
3(A)1 (B)2 3313(C)4 (D)2 3