3.求圆x?y?25过点B(?5,2)的切线方程.
接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果. (五)小结反思——拓展引申 1.课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法
①圆心为C(a,b),半径为r 的圆的标准方程为:(x?a)?(y?b)?r ; 圆心在原点时,半径为r 的圆的标准方程为:x?y?r.
②已知圆的方程是x?y?r,经过圆上一点M(x0,y0)的切线的方程是:
22222222222x0x?y0y?r2.
2.分层作业 (A)巩固型作业:教材P81-82:(习题7.6)1,2,4. (B)思维拓展型作业:
试推导过圆(x?a)?(y?b)?r上一点M(x0,y0)的切线方程. 3.激发新疑 问题七 1.把圆的标准方程展开后是什么形式? 2.方程x?y?6x?8y?20?0表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备. 以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:
22222横向阐述教学设计
(一)突出重点 抓住关键 突破难点
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点. 第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自
36
然突破.
(二)学生主体 教师主导 探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务. (三)培养思维 提升能力 激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.
1.1 任意角的概念与弧度制
1.2.1 任意角的三角函数(三角函数的定义)
一、教材 1、地位和作用:
本节课是人教版中职数学(必修)8.2.1任意角三角函数的第一课时任意角的三角函数是本章教学内容的基本概念,对三角内容的整体学习至关重要.同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。 2、学情分析:
1.初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2.学生具备一定的自学能力,部分同学对数学的学习有兴趣和积极性。
3.在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行 二、教学目标 知识目标:
1、理解任意角的三角函数的定义; 2、三角函数值的符号 3、会求任意角的三角函数值; 4、体会类比,数形结合的思想。
能力目标:(1)理解并掌握任意角的三角函数的定义; (2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力. 情感目标:
(1)学习转化的思想, (2)培养严谨的学习态度; 三、重难点
教学重点:1正确理解三角函数的定义 2任意角三角函数在各个象限的符号
37
教学难点:坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解; 四、教法学法 温故知新,逐步拓展
(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念; (2)通过例题讲解分析,逐步引出新知识,完善三角定义 学法
通过对已经掌握的锐角三角函数推广到任意角的三角函数定义,,引导出三角函数在各个象限内的符号,会求任意角的三角函数,学会从现有的知识探索新的知识,善于发现问题,提出问题,归纳问题,从而达到解决问题的目的。 五、教学过程
总体来说,由旧及新,由易及难, 逐步加强,层层深入由初中的直角三角形中锐角三角函数的定义过度到直角坐标系中锐角三角函数的定义,再发展到直角坐标系中任意角三角函数的定义,给定定义后通过应用定义又逐步发现新知识拓展完善定义. 1、引入锐角三角函数
课本例子引入,复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的? 由学生回答: SinA=对边/斜边 cosA=对边/斜边 tanA=对边/斜边
我们已经学习了锐角三角函数,知道它是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗? 2、任意三角函数
2.1 课本P15,得出正弦、余弦、正切等其他三个的公式,从而得到 知识归纳一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关.
(例1已知角A 的终边经过P(2,-3),求角A的三个三角函数值)(此题由学生自己分析独立动手完成)
知识归纳二:有上述公式看出,三个三角函数的定义域 2.2 象限
例题,已知角A 的终边经过P(-2a,-3a)( a不为0),求角A的三个三角函数值
(解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点)
知识归纳三:三角函数值的正负与角所在象限的关系
由学生推出结论,教师总结符号记忆方法:一全正,二正弦,三两切,四余弦,便于学生记忆 (确定符号,课本例3 P17) 3、巩固 4、小结:
任意角三角函数的定义, 三角函数值的符号,会求任意角三角函数值 5、课堂作业P100 1,2,4 (学生演板,教师讲解)
课后分层作业(满足不同层次的学生)
38
必作P23 1,2,3 练习B
1.2.2 单位圆与三角函数线
一、教材分析:
1.教材地位分析:三角函数是中学数学的重要内容之一,而三角函数线的概念及其应用不仅体现了数形结合的数学思想,又贯穿整个三角函数的教学.借助三角函数线可以推出三角函数公式,求解三角函数不等式,探索三角函数的图像和性质,可以说,三角函数线是研究三角函数的有利工具.
2.学生现实分析:学习本节前,学生已经掌握任意角三角函数的定义,三角函数值在各象限的符号,以及诱导公式一,为三角函数线的寻找做好了知识准备.高一上学期研究指、对数函数图像时,已带领学生学习了几何画板的基础知识,现在他们已经具备初步的几何画板应用能力,能够制作简单的动画,开展数学实验. 二、教学目标:
1.知识目标:使学生掌握如何利用单位圆中的有向线段分别表示任意角的正弦、余弦、正切函数值,并能利用三角函数线解决一些简单的三角函数问题.
2.能力目标:借助几何画板让学生经历概念的形成过程,提高学生观察、发现、类比、猜想和实验探索的能力;在论坛上开展研究性学习,让学生借助所学知识自己去发现新问题,并加以解决,提高学生抽象概括、分析归纳、数学表述等基本数学思维能力.
3.情感目标:激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境. 三、教学重点难点:
1.重点:三角函数线的作法及其简单应用.
2.难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式表示出来. 四、教学方法与教学手段:
1.教法选择:“设置问题,探索辨析,归纳应用,延伸拓展”——科研式教学.
2.学法指导:类比、联想,产生知识迁移;观察、实验,体验知识的形成过程;猜想、求证,达到知识的延展.
3.教学手段:本节课地点选在多媒体网络教室,学生利用几何画板软件探讨数学问题,做数学实验; 借助网络论坛交流各自的观点,展示自己的才能. 五、教学过程:
一、设置疑问,实验探索(17分钟) 教学环节 教学过程 设 置 疑 问,点明主题 前面我们学习了角的弧度制,角弧度数的绝设计意图 既可以引出单位圆,又可以使学生通过类比联想主动、快速的探索出三角函数值的几何形式. 对值,其中是以角作为圆心角时所对弧,的长,r是圆的半径.特别地, 当r =1时,此时的圆称为单位圆,这样就可以用单位圆中弧的长度表示所对圆心角弧度数的绝对值,那么能否用几何图形来表示任意角的正弦、余弦、正切函数值呢?这就是我们今天一起要研究的问题. 39
概 念 学 习,分 散 难 点 有向线段:带有方向的线段. (1)方向:按书写顺序,前者为起点,后者为终点,由起点指向终点. 如:有向线段OM,O为起点,M为终点,由O点指向M点. (动态演示) (2) 数值:(只考虑在坐标轴上或与坐标轴平行的有向线段) 绝对值等于线段的长度,若方向与坐标轴同向,取正值;与坐标轴反向,取负值.如: OM= 1, ON= -1, 相关概念的学习分散了教学难点,使学生能够更多的围绕重点展开探索和研究. AP = 实验探 索, 辨析研讨
美国华盛顿一所大学有句名言:“我听见了,就忘记了;我看见了,就记住了;我做过了,就理解了.”要想让学生深刻理解三角函数线的概念,就应该让学生主动去探索,大胆去实践,亲身体验知1.(复习提问)任意角的正弦如何定义? 角的终边上任意一点P(除端点外)的坐标是(),它与原点的距离是r, 比值叫做的正弦. 思考:能否用几何图形表示出角的正弦呢? 学生联想角的弧度数与弧长的转化, 类比猜测:若令r=1,则.取角的终边与单位圆的交点为P,过点P作轴的垂线,设垂足为M,则有向线段MP=.(学生分析的同时,教师用几何画板演示) 请学生利用几何画板作出垂线段MP,并改变角的终边位置,观察终边在各个位置的情形,注意有向线段的方向和正弦值正负的对应.特别地,当角的终边在轴上时,有向线段MP变成一个点,记数值为0. 这条与单位圆有关的有向线段MP叫做角40
的