好文档 - 专业文书写作范文服务资料分享网站

高中数学面试抽题汇总

天下 分享 时间: 加入收藏 我要投稿 点赞

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

7、课外作业 :(1)完成P178 A组1、2、3题

(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点? 五、说板书

板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

3.3幂函数

一、说教材

1、教材的地位和作用: 《幂函数》选自高一数学新教材必修1第2章第3节。幂函数是继指数函数和对数函数后研究的又一基本函数。通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合提升。 二、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征 ,制定如下教学目标: (1)基础知识目标:

①理解幂函数的概念,会画幂函数的图象。

②结合这几个幂函数的图象,理解幂函图象的变化情况和性质。 ③了解分段函数及其表示。 (2)能力训练目标:

①通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。 ②使学生进一步体会数形结合的思想。 (3)情感态度与价值观

1、通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的学习兴趣。

2、利用计算机,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。 3、教学重点与难点 三、重难点

重点:常见幂函数的概念、图象和性质。

难点:幂函数的单调性及比较两个幂值的大小。 下面,为了讲清重点难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈: 四、教法学法

教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。 1、引导发现比较法 因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。

2、借助信息技术辅助教学

由于多媒体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入镜头,将学生引到这节课的学习中来。再利用《几何画板》画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函

31

数图象形状和单调性的影响,并由此归纳幂函数的性质。 3、练习巩固讨论学习法 这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。 学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

老师先通过多媒体演示教科书中的5个问题,引导学生观察上述例子中函数模型,归纳出几个函数表达式的共同特征:解析式的右边都是指数式,且底数都是变量。这样就引出本节课要讲的幂函数。采用小组讨论的方法,数形结合,培养学生互助、协作的精神,使学生“学”有新“思”,“思”有所“得”,“练”有所“获”,学生会逐步感受到数学的美,产生一种成功感,从而提高学数学的兴趣。

最后我来具体谈一谈这一堂课的教学过程: 五、说教学程序

1、创设情境,引入新课

由多媒体展示引入:本节课要讲的幂函数。 把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。 2、由实例得出本课新的知识点。 3、讲解新课

问:这六个函数关系式从结构上看有什么共同的特点吗? 这时,学生观察可能有些困难,老师提示,可以用x表示自变量,用y表示函数值,上述函数式变成:y?x,y?x,y?x,y?x,y?x?231213,y?x?1 它们都是形如y?x的函数。(投影幂函数的定义。) 揭示课题:今天这节课,我们就来研究:幂函数 (1)幂函数的概念

①幂函数的定义。一般地,函数y?x叫做幂函数,其中x 是自变量,a是常数。 ②幂函数与指数函数之间的区别。

幂函数——底数是自变量,指数是常数; 指数函数——指数是自变量,底数是常数。 (2)几个常见幂函数的图象和性质

由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格

?y=x,y=x,y=x,y=xy?x,y?x2

3

1213,y?x?1,y?x?2(投影显示表格)

3?1?2y?x y?x y?x y?x 1213 定义域 值域 奇偶性 单调性 特殊点

y?x y?x y?x 32

2

根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。 4、例题讲解

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。

【例1】教科书P87例1 【例2】利用幂函数来比较各组数的大小。 这个例子是用作差法或作商法来证明函数的单调性 5、能力训练。

课堂练习:教科书P87习题2.3第1,2题。

使学生能巩固并自觉运用所学知识与解题思想方法。 6、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

7、变式延伸,进行重构。

重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。 8、板书设计: 2.3幂函数 1、幂函数的概念 3、例1 幂函数的定义。 4、例2 幂函数与指数函数之间的区别。 5、课堂练习 幂函数—底数是自变量,指数是常数; 6、课堂小结 指数函数—指数是自变量,底数是常数。 7、课后作业 2、几个常见幂函数的图象和性质 以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。希望各位专家领导对本堂说课提出宝贵意见。

2.3.1 园的标准方程

【一】教学背景分析

1. 教材结构分析

《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.

2.学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方

程的一般方法的基础上进行研究的. 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.

根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征 ,我制定如下教学目标:

3.教学目标

(1) 知识目标:①掌握圆的标准方程;

33

②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程; ③利用圆的标准方程解决简单的实际问题.

(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

②加深对数形结合思想的理解和加强对待定系数法的运用; ③增强学生用数学的意识.

(3) 情感目标:①培养学生主动探究知识、合作交流的意识; ②在体验数学美的过程中激发学生的学习兴趣.

根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

4. 教学重点与难点

(1)重点: 圆的标准方程的求法及其应用.

(2)难点: ①会根据不同的已知条件求圆的标准方程;

②选择恰当的坐标系解决与圆有关的实际问题.

为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析: 【二】教法学法分析

1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程. 2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求a、b、r的过程. 下面我就对具体的教学过程和设计加以说明: 【三】教学过程与设计 整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节: 创设情境启迪思维 深入探究获得新知 应用举例巩固提高 反馈训练形成方法 小结反思 拓展引申 下面我从纵横两方面叙述我的教学程序与设计意图. 首先:纵向叙述教学过程 (一)创设情境——启迪思维

问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问

A题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的

学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移. 通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节. (二)深入探究——获得新知

y问题二 1.根据问题一的探究能不能得到圆心在原点,半径为r的圆的方程?

2.如果圆心在(a,b),半径为r时又如何呢?

34

y4D 0C 2.7BxrC(a,b)0M(x,y)x

这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.

得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节. (三)应用举例——巩固提高 I.直接应用 内化新知

问题三 1.写出下列各圆的标准方程:

(1)圆心在原点,半径为3;

(2)经过点P(5,1),圆心在点C(8,?3). 2.写出圆(x?2)?y?(?2)的圆心坐标和半径.

我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.

II.灵活应用 提升能力

问题四 1.求以点C(1,3)为圆心,并且和直线3x?4y?7?0相切的圆的方程.

2.求过点C(1,4),圆心在直线3x?y?0上且与y轴相切的圆的方程. 3.已知圆的方程为x?y?25,求过圆上一点A(4,?3)的切线方程.

你能归纳出具有一般性的结论吗?

已知圆的方程是x?y?r,经过圆上一点M(x0,y0)的切线的方程是什么?

我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮. III.实际应用 回归自然

问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01m). 我选用了教材的例3,它是待定系数法求出圆的三个参数a、b、r的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.

(四)反馈训练——形成方法

问题六 1.求过原点和点P(1,1),且圆心在直线2x?3y?1?0上的圆的标准方程. 2.求圆x?y?13过点P(?2,3)的切线方程.

35

2222222222

高中数学面试抽题汇总

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。7、课外作业:(1)完成P178A组1、2、3题(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?五、说板书板书设计为表格式(见课件),这样的板书简明清楚,重点突出
推荐度:
点击下载文档文档为doc格式
7dvhc5ecvz7s7tu43p391qw0b8cvba00t5y
领取福利

微信扫码领取福利

微信扫码分享