难点:函数概念及符号y=f(x)的理解、函数性质之间的关系. 四、教学法 (一)教法
在本课的教学过程中采用设问、引导、启发、发现的方法,并灵活应用多媒体手段,以学生为主体,创设和谐、愉悦互动的环境,组织学生自主、合作的探究活动,引导学生探索新知识。 (二)学法
首先,学生通过研究教师在课堂上提供的实例和提出的问题,展开分析和讨论,发表个人的见解,接下来采用学生评价学生的方法提炼问题的中心思想。其次,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。最后,学生在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法 五、教学过程分析
(一)教学过程设计
(1)创设情境,提出问题。
引入课本的三个具体实例,引发学生的探索
对于例1:可以分别让学生计算t=1,2,5,10时,炮弹距离地面多高,同时关注t和h的变化范围,引导学生体会有解析式刻画变量之间的对应关系,启发学生用集合与对应的语言描述函数关系:
对于例2:可以让学生观察图像,找出臭氧空洞面积最大的年份或者臭氧空洞面积大约为2000万平方千米所对应的年份,引导学生体会图像对刻画变量之间的对应关系,并关注t和s的范围。启发学生再次利用集合与对应的语言描述函数关系:
对于例3:恩格尔系数与时间之间的关系是否和前两个例题的两个变量之间的关系相似?如何用集合和对应的语言进行描述
(2)引导探究,建构概念。 (1)进一步提问:“你觉得这三个问题有没有共同的特点呢?”由于这个问题比较开放,所以学生,容易形成数学以外的或者不在本课研究范围的观点。首先采用小组合作探究的形式获得共识,并由各小组派代表发表探究成果,接着再让其它学生根据老师的叙述,评论、提炼出重点。作为教学的引导者,我需要及时对学生的解答进行指引。最终得出函数的概念 (2)教师概括总结学生的探究成果,形成函数概念,并进一步解释函数概念 I、函数的三要素 Ii函数富豪的内涵 为深化学生对函数概念的理解 ,还可以用函数概念解析已经学过的一次函数,二次函数,妇女比例函数等,可以设计如下表格 函数 一次函数 二次函数 反比例函数 对应关系 定义域 值域 由学生填写
(3)自我尝试,初步应用。
例1、判断下列图像是否为函数图像。考察学生对函数定义的理解 例2、采用课本例1,并增加一问若f(x)=-1,求x 目的是引导学生探究求函数定义域的基本方法;对于用解析式表示的函数会用解析式求函数值或有函数值求子变量的值,进一步体会函数级号的含义,区分f(-1),f(a),f(x) 例3.采用课本例2
目的:通过判断函数的相等认识到函数的整体性,并指出在三要素中,由于值域是由定义域和对应法则决定的,所以只要两个函数的定义域和对应关系相同,两个函数就相等;进一步加深函数概念的理解
(4)当堂训练,巩固深化。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
采用课后练习1、2、3
6
(5)小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能? (二)作业设计
作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成. 我设计了以下作业:
(1)必做题:课后习题A 1(2,3),2、5、6 (2)选做题:课后习题B 1、2 (三)板书设计
板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。 五、评价分析
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
2.1.3 函数的单调性
一、教材分析
函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展;又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用;函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.
学情分析中学生已掌握了函数的含义和表示方法,有一定的抽象思维能力,但但函数单调性概念对他们来说还是比较抽象的.。。。
课时2 二、教学目标
? 知识目标:使学生从形与数两方面理解函数单调性、单调区间的概念,初步掌握利用函
数图象和单调性定义判断、证明函数单调性的方法. ? 能力目标:通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、
归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
? 情感目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习
惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 三、重难点
? 重点:函数单调性的概念、判断及证明.
? 难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.(然高一学生已经
有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.) 四、教法与学法
7
教师启发讲授,学生探究学习. ? 教法学法 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性. 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念. 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达. ? 学法:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.
? 教学手段计算机、投影仪. 五、教学过程
(一)创设情境,提出问题 (问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:
教师活动]引导学生观察图象,提出问题:
问题1:说出气温在哪些时段内是逐步升高的或下降的?
问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征? 【归纳】用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小
【设计意图】 从生活情境引入新课,激发兴趣。问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心. (二)教授新课 (概念---图像、理论;证明) 2.1 归纳探索 形成概念 2.1.1.借助图象,直观感知
问题1:分别作出函数
变化时,函数值有什么变化规律?
8
的图象,并且观察自变量
预案:(1)函数
在整个定义域内 y随x的增大而增大;函数
在整
个定义域内 y随x的增大而减小.
(2)函数
在
上 y随x的增大而增大,在
上y随x的增大而减小.
(3)函数在上 y随x的增大而减小,在上y随x的增大而减小.
【设计意图】引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.
问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数
在某个区间上随自变量x的增大,y也越来越大,我们说函数
在某个区间上随自变量x的增大,y越来越小,我们
在该区间上为增函数;如果函数说函数
在该区间上为减函数.
教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.给出定义,剖析概念
①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值
⑴若当<时,都有f() ⑵若当<时,都有f()>f(),则f(x) 在这个区间上是减函数(如图4)。 9 ②单调性与单调区间 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。 注意: (1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 当x1 y随x增大而减小。 函数图象从左到右逐渐上升;递减 函数图象从左到右逐渐下降。 y随x增大而增大;当x1 几何解释:递增 (2)函数单调性是针对某一个区间而言的,是一个局部性质。 有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。 。 判断2:定义在R上的函数 f (x)满足 f (2)> f(1),则函数 f (x)在R上是增函数。(× 函数的单调性是函数在一个单调区间上的“整体”性质,殊值代替。 训练:画出下列函数图像,并写出单调区间: 10 具有任意性,不能用特