(1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立 因此它就是等差数列{an}的通项公式。 例题:P36 3、等差中项
4、an=an+b 结论 P37 接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 ,
即an=2n-1 以此来巩固等差数列通项公式运用 同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。 (三)巩固
通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。 例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项? 在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an.
例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。 在前面例1的基础上将例2当作练习作为对通项公式的巩固 例3 是一个实际建模问题
建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米? 这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)。 设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法 (四)反馈练习
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。 目的:对学生加强建模思想训练。
3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列 此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结(由学生总结这节课的收获) 1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
66
2.等差数列的通项公式 an= a1+(n-1) d会知三求一 3.用“数学建模”思想方法解决实际问题 (六)布置作业
必做题:课本P114 习题3.2第2,6 题 选做题:已知等差数列{an}的首项a1=-24,从第10项开始为正数,求公差d的取值范围。 (目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求) 五、板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
2.3.2 等差数列前n项和的公式
一、教材分析
二、教学目标 A、知识目标:
掌握等差数列前n项和公式的推导方法;掌握公式的运用。 B、能力目标:
(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。 (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。 C、情感目标:(数学文化价值) (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。 (2)通过公式的运用,树立学生\大众教学\的思想意识。 (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。 三、重难点
教学重点:等差数列前n项和的公式。
教学难点:等差数列前n项和的公式的灵活运用。 四、教法学法
教学方法:启发、讨论、引导式。 教具:现代教育多媒体技术。 五、教学过程
一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯\神速求和\的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:\把从1到100的自然数加起来,和是多少?\年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10. 这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
67
生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。 生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成S=10+9+8+7+6+5+4+3+2+1。 上面两式相加得2S=11+10+......+11=10×11=110 所以我们得到S=55, 即1+2+3+4+5+6+7+8+9+10=55
师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。 理由是:1+100=2+99=3+98=......=50+51=101,有50个101,所以1+2+3+......+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢? 生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq. 二、教授新课(尝试推导)---两个公式
师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。 生4:Sn=a1+a2+......an-1+an也可写成 Sn=an+an-1+......a2+a1
两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1) n个 =n(a1+an) 所以Sn=(I)
师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得
Sn=na1+ d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。
公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。 引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n-1)d,Sn==na1+ d];这些量中有几个可自由变化? (三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。
三、公式的应用(通过实例演练,形成技能)。
1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算: (1)1+2+3+......+n
(2)1+3+5+......+(2n-1) (3)2+4+6+......+2n
(4)1-2+3-4+5-6+......+(2n-1)-2n 请同学们先完成(1)-(3),并请一位同学回答。师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。 生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以
原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n) =n2-n(n+1)=-n
生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法: 原式=-1-1-......-1=-n n个
68
师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。
例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。 生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4 又∵d=-2,∴a1=6
∴S12=12 a1+66×(-2)=-60 生9:(2)由a1+a2+a3=12,a1+d=4 a8+a9+a10=75,a1+8d=25 解得a1=1,d=3 ∴S10=10a1+=145
师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。 师:(继续引导学生,将第(2)小题改编)
①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。 2、用整体观点认识Sn公式。
例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)
师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么? 生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。 师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。
四、小结与作业。
师:接下来请同学们一起来小结本节课所讲的内容。 生11:1、用倒序相加法推导等差数列前n项和公式。
2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。 生12:1、运用Sn公式要注意此等差数列的项数n的值。 2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。
3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。
师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。
本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。 数学思想:类比思想、整体思想、方程思想、函数思想等。 作业:P49:13、14、15、17
69
2.3.1 等比数列
2.3.2 等比数列的前n项和
教材地位是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.从学生认知角度看学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错. 学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.
3.1 不等关系与不等式
3.2 均值不等式-----基本不等式
一、教材分析
1、本节教材的地位和作用
“均值不等式” 是在学完“不等式的性质”、“不等关系”的基础上对不等式的进一步研究.在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。 二、 教学目标
(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。 (2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。
(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。
三、教学重点、难点
重点: 均值不等式公式,求最值;
难点:均值不等式的内涵及几何意义的挖掘,用基本不等式求最值。 四、教法说明
本节课借助几何画板,使用多媒体辅助进行直观演示.采用启发式教学法创设问题情景,激发学生开始尝试活动.运用生活中的实际例子,让学生享受解决实际问题的乐趣. 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。
学法指导:为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,
70
高中数学面试抽题汇总
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)