/
天津市东丽区中考数学二模试卷
一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.计算(﹣5)×(﹣2)的结果等于( ) A.7
B.﹣10 C.10 D.﹣3
2.tan30°的结果等于( ) A.
B.
C.
D.
3.下列图形中,属于轴对称图形的是( )
A. B. C. D.
4.在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为( )
A.133×10 B.1.33×10 C.133×10 D.133×10 5.如图所示,几何体的主视图是( )
3
4
5
A. B. C. D.
6.已知反比例函数y=,当1<x<2时,y的取值范围是( )
A.0<y<5 B.1<y<2 C.5<y<10 D.y>10 7.正六边形的边心距是A.8.若
B.2
C.
,则它的边长是( ) D.
=0,则x的值等于( )
D.无法确定
A.3或﹣2 B.﹣3 C.2 9.化简A.x+1 B.
的结果是( ) C.x﹣1 D.
10.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于( )
/
/
A.100° B.105° C.115° D.120°
11.为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( )
A.1200名 B.450名 C.400名 D.300名
12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是( )个. A.4个 B.3个 C.2个 D.1个
二、填空题(本大题共6小题,共18分) 13.计算(﹣2y3)2的结果等于 .
14.一次函数y=﹣x+3的图象上有两点(x1,y1)和(x2,y2),且x1<x2,则y1与y2的大小关系为 . 15.在五张完全相同的卡片上,分别写有数字0,﹣3,﹣2,1,﹣,现从中随机抽取一张,抽到写有非负数的卡片的概率是 .
16.四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD= .
17.已知,在△ABC中,∠ABC=90°,AB=4,BC=3,若线段CD=2,且CD∥AB,则AD的长度等于 . 18.如图,是由每个边长都是1的小正方形构成的网格,点O,A,B,M均为格点,P为线段OM上的一个动点.
(1)点B到OM的距离等于 ;
(2)当点P在线段OM上运动,且使PA+PB取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.
2
2
/
/
三、解答题(本大题共7小题,共66分) 19.解不等式组
,并把解集在数轴上表示出来.
20.为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.
(1)请将条形统计图补充完整;
(2)求这100个样本数据的平均数,众数和中位数;
(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?
21.已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠
DAB=45°.
(Ⅰ)如图①,判断CD与⊙O的位置关系,并说明理由;
(Ⅱ)如图②,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离. 22.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?
/
/
(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)
23.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1000元后,超出1000元的部分按90%收费;在乙商场累计购物超过500元后,超出500元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1000. (1)根据题题意,填写下表(单位:元)
累计购物 在甲商场实际花费 在乙商场实际花费
1300
2900
… … …
x
(2)当x取何值时,小红在甲、乙两商场的实际花费相同?
(3)当小红在同一商场累计购物超过1000元时,在哪家商场的实际花费少?
24.如图,有一张直角三角形纸片ABC,∠ACB=90°,∠B=60°,BC=3,直角边AC在x轴上,B点在第二象限,A(
,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在的直线上,得到折痕EF(F在x轴上),
再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA方向平行移动,至B点到达A点停止(记平移后的四边形为B1C1F1E1).在平移过程中,设平移的距离BB1=x,四边形B1C1F1E1与△AEF重叠的面积为S. (1)求折痕EF的长;
(2)平移过程中是否存在点F1落在y轴上?若存在,求出x的值;若不存在,说明理由; (3)直接写出S与x的函数关系式及自变量x的取值范围 .
25.如图,点A(﹣2,0)、B(4,0)、C(3,3)在抛物线y=ax2+bx+c上,点D在y轴上,且DC⊥BC,∠BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F. (1)求抛物线的解析式;
(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由; (3)若△FDC是等腰三角形,求点F的坐标.
/
/
/