2024年内蒙古包头市中考数学真题及答案
一、选择题:本大题共12小题,每小题3分,共36分. 1.(3分)计算|﹣A.0
|+()的结果是( ) B.
C.
D.6
﹣1
2.(3分)实数a,b在数轴上的对应点的位置如图所示.下列结论正确的是( )
A.a>b
B.a>﹣b
C.﹣a>b
D.﹣a<b
3.(3分)一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是( ) A.4
B.
C.5
D.
4.(3分)一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为( )
A.24
5.(3分)在函数y=A.x>﹣1
B.24π ﹣
C.96
D.96π
中,自变量x的取值范围是( )
C.x>﹣1且x≠2
D.x≥﹣1且x≠2
B.x≥﹣1
6.(3分)下列说法正确的是( ) A.立方根等于它本身的数一定是1和0 B.顺次连接菱形四边中点得到的四边形是矩形
C.在函数y=kx+b(k≠0)中,y的值随着x值的增大而增大 D.如果两个圆周角相等,那么它们所对的弧长一定相等
7.(3分)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,
E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是( )
A.1
B.
C.2
D.
,以BC为直径作半圆,交AB于点D,则阴
8.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2影部分的面积是( )
A.π﹣1
9.(3分)下列命题:
①若x+kx+是完全平方式,则k=1;
②若A(2,6),B(0,4),P(1,m)三点在同一直线上,则m=5; ③等腰三角形一边上的中线所在的直线是它的对称轴;
④一个多边形的内角和是它的外角和的2倍,则这个多边形是六边形. 其中真命题个数是( ) A.1
B.2
C.3
D.4
2
2
B.4﹣π C. D.2
10.(3分)已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x﹣12x+m+2=0的两根,则m的值是( ) A.34
B.30
C.30或34
D.30或36
11.(3分)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是( )
A. B. C.﹣1 D.
12.(3分)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y=kx+b上,则b的最大值是( )
A.﹣
B.﹣
C.﹣1
D.0
二、填空题:本大题有6小题,每小题3分,共24分.
13.(3分)2024年我国国内生产总值(GDP)是900309亿元,首次突破90万亿大关,90万亿用科学记数法表示为 . 14.(3分)已知不等式组
的解集为x>﹣1,则k的取值范围是 .
15.(3分)化简:1﹣÷= .
16.(3分)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:
班级 甲 乙
参赛人数 平均数 45 45
83 83
中位数 86 84
方差 82 135
某同学分析上表后得到如下结论: ①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数少于甲班优秀的人数(竞赛得分≥85分为优秀); ③甲班成绩的波动性比乙班小.
上述结论中正确的是 .(填写所有正确结论的序号)
17.(3分)如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是 .
18.(3分)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为 .
19.(3分)如图,在平面直角坐标系中,已知A(﹣1,0),B(0,2),将△ABO沿直线AB翻折后得到△ABC,若反比例函数y=(x<0)的图象经过点C,则k= .
20.(3分)如图,在Rt△ABC中,∠ABC=90°,BC=3,D为斜边AC的中点,连接BD,点F是BC边上的动点(不与点B、C重合),过点B作BE⊥BD交DF延长线交于点E,连接CE,下列结论: ①若BF=CF,则CE+AD=DE; ②若∠BDE=∠BAC,AB=4,则CE=③△ABD和△CBE一定相似;
④若∠A=30°,∠BCE=90°,则DE=
. ;
2
2
2
其中正确的是 .(填写所有正确结论的序号)
三、解答题:本大题共有6小题,共60分.
21.(8分)某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题: 测试成绩(分) 人数(人)
23 4
25 18
26 15
28 8
30 5
(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;
(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)
22.(8分)如图,在四边形ABCD中,AD∥BC,AB=BC,∠BAD=90°,AC交BD于点E,∠ABD=30°,AD=
,求线段AC和BE的长.
=
=
)
(注:
23.(10分)某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为1500元;旺季所有的货车每天能全部租出,日租金总收入为4000元. (1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?
(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高? 24.(10分)如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2点D,连接MA,MC. (1)求⊙O半径的长; (2)求证:AB+BC=BM.
,弦BM平分∠ABC交AC于