[教学]高中高一数学必修1各章知识点总结第一章 集合与
函数概念一
高中高一数学必修1各章知识点总结第一章 集合与函数概念一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性. 3、集合的表示:(1){ ? } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (2). 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 4(集合的表示方法:列举法与描述法。常用数集及其记法:非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 5.关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a?A ,相反,a不属于集合A 记作 a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 6、集合的分类: (1)(有限集 含有有限个元素的集合 (2)(无限集 含有无限个元素的集合 (3)(空集 不含任何元素的集合 例:{x|x2=,5,=Φ 二、集合间的基本关系 1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2(“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ? 任何一个集合是它本身的子集。即A?A ?如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A) ?如果 A?B, B?C ,那么 A?C ? 如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的运算 1(交集的定义:一般
地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集(记作A?B(读作:A交B:),即A?B={x|x?A,且x?B}( 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A?B(读作:A并B:),即A?B={x|x?A,或x?B}( 3、交集与并集的性质:A?A = A, A?φ= φ, A?B = B?A,A?A = A, A?φ= A ,A?B = B?A. 4、
)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的全集与补集(1
集合,叫做S中子集A的补集(或余集)记作: CSA 即 CSA ={x ? x?S且 x?A} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:?CU(C UA)=A ?(C UA)?A=Φ ?(CUA)?A=U 二、函数的有关概念 1(函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A?B为从集合A到集合B的一个函数(记作: y=f(x),x?A(其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x?A }叫做函数的值域(能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义. 2.构成函数的三要素:定义域、对应关系和值域再注意:(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方
法:?表达式相同;?定义域一致 (两点必须同时具备) 3(区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示( 4(映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B” 给定一个集合A到B的映射,如果a?A,b?B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,?集合A、B及对应法则f是确定的;?对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;?对于映射f:A?B来说,则应满足:(?)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(?)集合A中不同的元素,在集合B中对应的象可以是同一个;(?)不要求集合B中的每一个元素在集合A中都有原象。 5.常用的函数表示法:解析法: 图象法: 列表法: 6.
分段函数 在定义域的不同部分上有不同的解析表达式的函数。(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集( 7(函数单调性(1)(设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
高中数学必修 1 知识点 第 章集 与 数 念 一 合 函 概 一 集 有 概 、 合 关 念 1、 合 含 : 些 定 对 集 一 就 为 个 合 其 每 个 象 元 。 集 的 义 某 指 的 象 在 起 成 一 集 , 中 一 对 叫 素 2、 合 中 素 三 特 : 集 的 元 的 个 性 1.元 的 定 ; 素 确 性 2.元 的 异 ; 素 互 性 3.元 的 序 素 无 性 说 : 于 个 定 集 , 合 的 素 确 的 任 一 对 或 是 者 是 个 定 集 的