? 基因表达(gene expression) 是指将来自基因的遗传信息合成功能性基因产物的过程。 基因表达产物通常是蛋白质,但是非蛋白质编码基因如转移RNA(tRNA)或小核RNA(snRNA)基因的表达产物是功能性RNA。 基因表达可以通过对其中的几个步骤,包括转录,RNA剪接,翻译和翻译后修饰,进行调控来实现对基因表达的调控。基因调控赋予细胞对结构和功能的控制,基因调控是细胞分化、形态发生以及任何生物的多功能性和适应性的基础。基因调控也可以作为进化改变的底物,因为控制基因表达的时间、位置和量可以对基因在细胞或多细胞生物中的功能(作用)产生深远的影响。 ? 转录 原核生物的转录是通过单一类型的RNA聚合酶进行的,需要一个称为Pribnow盒的DNA序列以及sigma因子(σ因子)以开始转录。原核蛋白编码基因的转录产生的是可以翻译成蛋白质的信使RNA(mRNA) 真核生物的转录由三种类型的RNA聚合酶进行,每种RNA聚合酶需要一种称为启动子的特殊DNA序列和一组DNA结合蛋白(转录因子) 来启动该过程。 RNA聚合酶I负责核糖体RNA(rRNA)基因的转录。 RNA聚合酶II(Pol II)转录所有蛋白质编码基因以及一些非编码RNA加工:RNA(例如snRNA,snoRNA或长非编码RNA)。 RNA聚合酶III转录5S rRNA,转移RNA(tRNA)基因和一些小的非编码RNA(例如7SK)。当聚合酶遇到称为终止子的序列时,转录结束。真核基因的转录会产生RNA的初级转录本(pre-mRNA),必须经过一系列加工才能成为成熟RNA(mRNA)。RNA的加工包括5端加帽、3端多腺苷酸化和RNA剪接。RNA加工可能是真核生物细胞核带来的进化优势。 ? RNA的成熟 多数生物体中的非编码基因(ncRNA)被转录为需要进一步加工的前体。 核糖体RNA(rRNA)通常被转录为含有一个或多个rRNA的前体rRNA,前体rRNA后来在特定位点被大约150种不同的snoRNA切割和修饰。 转移RNA(tRNA)的5'和3'端序列分别被RNase P和tRNase Z去除,然后通过核苷酸转移酶加入在3'加上非模板CCA尾巴。 小RNA(miRNA)首先被转录为具有帽和poly-A尾的初级转录物即pri-miRNA,然后在核内被Drosha和Pasha酶加工成短的约70个核苷酸的茎环结构,即pre-miRNA。在输出到细胞质中后,内切核酸酶Dicer将其加工成成熟miRNA。pre-miRNA和Dicer的相互作用同时也启动了由Argonaute蛋白组成的RNA诱导的沉默复合物(RISC)的形成。 ? RNA输出
真核生物中,一些RNA在细胞核中起作用,大多数成熟的RNA通过核孔从细胞核输出到细胞质中。包括蛋白质合成中涉及的所有RNA类型。 ? 翻译
成熟RNA是非编码RNA的最终基因表达产物 。
信使RNA(mRNA)是编码一种或多种蛋白质合成的遗传信息的载体。 每个mRNA由三部分组成:5'非翻译区(5'UTR),蛋白质编码区或开放阅读框(ORF)和3'非翻译区(3'UTR)。编码区携带由遗传密码编码的蛋白质合成信息即三联体。编码区的每个核苷酸三联体称为密码子,并且对应于与转移RNA中的反密码子三联体互补的结合位点。具有相同反密码子序列的转移RNA总是携带相同类型的氨基酸。核糖体根据编码区中三联体的顺序,将氨基酸链接在一起形成多肽。核糖体有助于转移RNA与信使RNA结合,并从每个转移RNA中获取氨基酸,产生多肽链。
原核生物的翻译通常发生在转录点(共转录),通常使用仍处于产生过程中的信使RNA。真核生物的翻译发生在细胞的多个区域,主要位置细胞质和内质网膜。 ? 折叠
刚从mRNA序列翻译过来的蛋白质都是未折叠或无规卷曲的多肽,没有任何的三维结构。氨基酸彼此相互作用使得多肽从无规卷曲折叠成其特征性和功能性三维结构 。氨基酸序列决定了蛋白质的三维结构,且正确的三维结构对于功能至关重要,尽管功能蛋白的某些部分可能仍未展开。伴侣蛋白的酶有助于新形成的蛋白质获得折叠,成为它发挥作用需要的三维结构。辅助蛋白质折叠是真核生物内质网的主要作用之一。
? 蛋白质运输
许多蛋白质定位于细胞质以外的其它细胞器,多种信号序列(信号肽)负责将蛋白质引导至它们应该在的细胞器。
原核生物中,由于细胞的有限区室化,这通常是一个简单的过程。真核生物却存在多种不同的靶向过程以确保蛋白质到达正确的细胞器。并非所有蛋白质都保留在细胞内,许多蛋白质如消化酶、激素和细胞外基质蛋白通常需要被输出胞外。真核生物蛋白质输出机制比较明确,先转运到内质网,然后通过高尔基体运输出去
? 基因表达的调控:转录,转录后,翻译,翻译后
? 概念
基因表达调控:regulation of gene expression or gene control:即从DNA到蛋白质的过程调节。是生物体内基因表达的调节控制,使细胞中基因表达的过程在时间、空间上处于有序状态,并对环境条件的变化作出反应的复杂过程。基因表达的调控可在多个层次上进行,包括基因水平、转录水平、转录后水平、翻译水平和翻译后水平的调控。基因表达调控是生物体内细胞分化、形态发生和个体发育的分子基础。 基因表达调控主要表现在以下几个方面:①转录水平上的调控;②mRNA加工、成熟水平上的调控;③翻译水平上的调控。 ? 转录调控——DNA 可分为三种主要途径:1)遗传调控(转录因子与靶标基因的直接相互作用);2)调控转录因子与转录机制相互作用,3)表观遗传调控(影响转录的DNA结构的非序列变化)。 通过转录因子直接调控靶标DNA表达是最简单和最直接的转录调控改变转录水平的方法。基因的编码区周围通常都具有几个蛋白质结合位点,具有调节转录的特定功能。常见的调控蛋白质与DNA结合的位点有增强子、绝缘子和沉默子。调节转录的机制非常多样,可以阻断DNA上与RNA聚合酶结合的关键位点,也可以充当激活剂辅助RNA聚合酶结合来促进转录。 转录因子的活性进一步受到细胞内信号的调节,引起蛋白质翻译后修饰,包括磷酸化\\乙酰化或糖基化。这些变化影响转录因子直接或间接转录因子与启动子DNA的结合、RNA聚合酶的募集以及新合成RNA分子的延伸。 真核生物中的核膜通过允许这些转录因子在细胞核中存在的持续时间来进一步调控转录环境刺激或内分泌信号可能导致调节蛋白的修饰,引发细胞内信号的级联,导致基因表达的调节。 表观遗传对转录具有显著影响。一般来说,表观遗传会改变DNA与蛋白质的结合,从而影响转录。 DNA甲基化是表观遗传对基因表达影响的广泛机制,并且在细菌和真核生物中可见,在可遗传的转录沉默和转录调节中起作用。在真核生物中,由组蛋白密码控制的染色质结构影响DNA的获取,对常染色质和异染色质区域中的基因表达具有显着影响。 ? 转录后调控 真核生物的RNA被翻译之前需要通过核孔输出,因此核输出对基因表达有着显著影响。所有进出细胞核的mRNA的运输都是通过核孔进行的,受到各种输入蛋白和输出蛋白的控制。 携带遗传密码的mRNA需要存活足够长的时间才能被翻译,因为mRNA在翻译之前必须经过很长距离的运输。在典型的细胞中,RNA分子仅在特异性保护的条件下才是稳定的,不被RNA酶降解。 RNA降解对真核细胞基因表达调控特别重要。在真核生物中,RNA通过某些转录后修饰,特别是5端戴帽和3端多腺苷酸化而获得稳定。 ? 翻译调控
翻译调控的效果不如转录调控或调控mRNA的稳定性,但也偶尔得到使用。抑制蛋白质翻译是毒素和抗生素的主要作用目标,因此它们可以通过超越其正常的基因表达控制来杀死细胞。蛋白质合成抑制剂包括抗生素新霉素和毒素蓖麻毒素。 ? 翻译后调控
翻译后修饰(PTM)是对蛋白质的共价修饰。像RNA剪接一样,它们有助于使蛋白质组更加丰富多样。这些修饰通常由酶催化。此外,诸如氨基酸侧链残基的共价添加这样的修饰过程通常可以被其它酶逆转。但蛋白水解酶对蛋白质骨架的水解切割是不可逆转的 。PTM在细胞中发挥着许多重要作用。例如,磷酸化主要涉及激活和失活蛋白质以及信号传导途径 。PTM参与转录调控,因为乙酰化和甲基化的一个重要功能是组蛋白尾部修饰,它改变了DNA的可转录性
? 原核生物基因表达调控
原核生物基因表达调控决定于,DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用。在转录调控中,已搞清楚了细菌的几个操纵子模型,以乳糖操纵子和色氨酸操纵子为例 ? 乳糖操纵子
大肠杆菌乳糖操纵子包括4类基因:①结构基因,能通过转录、翻译使细胞产生一定的酶系统和结构蛋白,这是与生物性状的发育和表型直接相关的基因。乳糖操纵子包含3个结构基因:lacZ、lacY、lacA。LacZ合成β—半乳糖苷酶,lacY合成透过酶,lacA合成乙酰基转移酶。②操纵基因O,控制结构基因的转录速度,位于结构基因的附近,本身不能转录成mRNA。③启动基因P,位于操纵基因的附近,它的作用是发出信号,mRNA合成开始,该基因也不能转录成mRNA。④调节基因i:可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白。操纵基因、启动基因和结构基因共同组成一个单位——操纵子(operon)。
调节乳糖催化酶产生的操纵子就称为乳糖操纵子。其调控机制简述如下:
抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。
诱导作用:乳糖的存在情况下,乳糖代谢产生别乳糖(alloLactose),别乳糖能和调节基因产生的阻遏蛋白结合,使阻遏蛋白改变构象,不能在和操纵基因结合,失去阻遏作用,结果RNA聚合酶便与启动基因结合,并使结构基因活化,转录出mRNA,翻译出酶蛋白。
负反馈:细胞质中有了β—半乳糖苷酶后,便催化分解乳糖为半乳糖和葡萄糖。乳糖被分解后,又造成了阻遏蛋白与操纵基因结合,使结构基因关闭。 ? 色氨酸操纵子
色氨酸操纵子负责调控色氨酸的生物合成,它的激活与否完全根据培养基中有无色氨酸而定。当培养基中有足够的色氨酸时,该操纵子自动关闭;缺乏色氨酸时,操纵子被打开。色氨酸在这里不是起诱导作用而是阻遏,因而被称作辅阻遏分子,意指能帮助阻遏蛋白发生作用。色氨酸操纵子恰和乳糖操纵子相反。
原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征是能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过程,并使生物的组织和器官在一定的环境条件范围内保持正常的生理功能。
? 真核生物基因表达调控
真核生物基因表达调控据其性质可分为两大类:第一类是瞬时调控或叫可逆调控,相当于原核生物对环境条件变化所做出的反应。瞬时调控包括某种代谢底物浓度或激素水平升降时及细胞周期在不同阶段中酶活性和浓度调节。第二类是发育调节或称不可逆调控,这是真核生物基因表达调控的精髓,因为它决定了真核生物细胞分化,生长,和发育的全过程。据基因调控在同一时间中发生的先后次序,又可将其分为转录水平调控,转录后的水平调控,翻译水平调控及蛋白质加工水平的调控,研究基因调控应回答下面三个主要问题:①什么是诱发基因转录的信号? ②基因调控主要是在那个环节(模板DNA转录,mRNA的成熟或蛋白质合成)实现的?③不同水平基因调控的分子机制是什么? ? 转录水平的调控
Britten和Davidson于1969年提出的真核生物单拷贝基因转录调控的模型——Britten—Davidson模型。该模型认为在整合基因的5’端连接着一段具有高度专一性的DNA序列,称之为传感基因。在传感基因上有该基因编码的传感蛋白。外来信号分子和传感蛋白结合相互作用形成复合物。该复合物作用于和它相邻的综合基因组,亦称受体基因,而转录产生mRNA,后者翻译成激活蛋白。这些激活蛋白能识别位于结构基因(SG) 前面的受体序列并作用于受体序列,从而使结构基因转录翻译。
若许多结构基因的临近位置上同时具有相同的受体基因,那么这些基因就会受某种激活因子的控制而