(1)对交流电气化铁路采取的措施
电气化铁路可采用带回流线的直接供电或自耦变压器供电方式。带回流线的直接供电方式使原来流经轨道、大地的回流,一部分改由架空回流线流回牵引变电所,其方向与接触网中电流方向相反,从而牵引网阻抗和轨道电位都有所降低。该方式的吸流效果比直接供电方式约增加10%-20%。自耦变压器供电方式(也称AT 供电方式),其吸流效果约为90%-95%,即地中电流约占接触网电流比例的5%-10%。此外,加强铁轨与枕木间的绝缘,以减少入地电流,也可以降低电气化铁路对埋地管道的阻性耦合干扰。 (2)对管道采取的措施
对于管道交流杂散电流干扰问题可采用的措施:
1)在有干扰的管段,加强防腐涂层质量,降低交流电气化铁路对管道的容性耦合干扰;
2)加大管道与铁路接地体的距离,并采取措施防止雷电或故障电流对管道的有害影响,降低阻性耦合干扰; 3)对管道本身采取接地排流,降低感性耦合烦扰。接地排流是将管道上感应的交流电排放到大地中去,消除交流电压对人身及设备的危害。一般接地体材料使用废钢即可,无特殊要求。但其接地电阻应尽可能小,不宜大于0.5欧,可以通过增加接地体的并联根数,或采用盐等减阻剂进行处理,接地体埋设在距防护管道30m 以外的管道一侧。接地排流一
般分为直接接地排流、排流节排流和牺牲阳极排流。直接接地排流是将受干扰管道通过接地线直接与接地体相连,其优点是设备比较简单,缺点是阴极保护电流将在接地点入地,大大缩短保护距离,降低保护效果。如果将排流接地体直接与管道连接,由于接地电阻很小,保护电流流失,相当大面积的防腐层破坏,阴极保护电流量增加,以致破坏阴极保护正常运行,所以需要增加排流节。排流节排流又分为电容排流、二极管排流和钳位式排流,通常采用钳位式排流。
根据实际工程运行经验及检测结果,当电气化铁路单纯跨越埋地管道时,一般杂散电流很小,在埋地管道与交流接地体的安全距离符合表3的要求时,一般不需要增加排流防护措施,但需在管道穿越处增加一处综合测试桩,以检测铁路投运后管道电位的变化。若测得电压值超过规范《埋地钢质管道交流排流保护技术标SY/T 0032-2000》管道交流干扰判断指标,或超过阴极保护设备交流干扰能力则必须采取排流保护的措施。因此,对于交流干扰下的管道,正常的阴极保护非常重要,阴极保护设备应具有一定的交流抗干扰力。
表3 埋地管道与交流接地体的安全距离
当电气化铁路与埋地管道近距离平行时,必须增加排流防护措施。其中,德国标准给出了涂敷良好的管道与50HZ电气化铁路平行时的限制长度,它是平行间距和干扰电流的函数。如表4所示。
表4 涂敷良好的管道与50HZ电气化铁路平行时的限制长度(km)
管道本身交流干扰防护措施,主要有接地排流,但直接排流会对原有的阴极保护产生影响,因此,需要在管道和接地体间串隔直环节,主要有钳位式排流器、电容排流器、二极管排流器。
其次,我国的排流技术经过长期进步,已经向微型化,智能化方向转变。排流设备从过去的人工采集数据,手工分析,再进行排流,已转变为能够在技术上实现实时采集、监制和排流一体化操作。纵观多数排流设备,大都利用硅二极
管正向导通反向截止的特性,消除交流电压,对杂散电流进行极性排流,实现了自动排流和自动控制电流大小。其特点表现在:核心由单片机智能控制系统控制,数据传输、监测、分析同步进行;使用标准RS一485或RS一232串口;使用开放式通讯协议。
但是,目前的排流技术还存在如下问题:主要以直流排流为主,交流排流为辅;交流排流和混合排流研究少,检测和排流缺乏同步性;在排流过程中,没有排流效果反馈系统,排流误差较大;在进行排流电流整定后,固化不变,强电流流入大地时,只能局部保护管道,对防腐层破损的区域,将加速管道的腐蚀破坏;这些问题都需要腐蚀研究工作者深入解决。 七、结语
交流电气化铁路产生的杂散电流是一种有害的电流,会对埋地金属燃气管道造成危害,必须加以治理。因此,弄清杂散电流对管道干扰腐蚀的原理和特点,并有针对性的采取防治措施,在实际工程实践中具有指导性的意义。 参考文献
[1]冯金柱.电气化铁路有哪几种电流制[J].铁路知识,2004;4:47
[2]黄元才,吴良治.交流电气化铁道接触网[M].北京:中国铁
道出版社,1988
[3]唐明华.油气管道阴极保护[M].北京:石油工业出版社, 1986.
[4] 俞蓉蓉.地下金属管道的腐蚀与防护[M].北京:石油工业出版社,1998.
[5]胡士信.阴极保护手册[M].北京:化学工业出版社,1999.