精品文档
高频电子第五版
3?1解:f0?1MHz2Δf0.7?1?106?990?103?10(kHz)f01?106Q???10032Δf0.710?10取R?10Ω则L?C?QR?01?100?10?159(?H)62?3.14?101?159(pF)262?6?0L(2?3.14?10)?159?10
113?2解:(1)当?01?或ω?时,产生并联谐振。02L1C1L2C2?(2)当?01?(3)当?01?1或ω02?L1C11或ω02?L1C11时,产生串联谐振。L2C21时,产生并联谐振。L2C2
1L1)R2??jω0LR(1?2)R2?Ljω0CCω0LCC?R3?3证明:Z???112RR?jω0L?R?2R?jω0L(1?2)jω0Cω0LC
3?4解:1?由?15?C??16052??450?C?5352得C?40pF(R?jω0L)(R?由?12?C??16052??100?C?5352得C?-1pF?不合理舍去?故采用后一个。2?L?3?
L C C’
11??180?μH?223?12?0?C?C???2?3.14?535?10???450?40??10
精品文档
精品文档
3?5解:Q0?11??2126-12?0C0R2?3.14?1.5?10?100?10?5L0?11??112?μH?226-12?0C0?2?3.14?1.5?10?100?10Vom1?10-3Iom???0.2?mA?R5VLom?VCom?Q0VSm?212?1?10-3?212?mV?113?6解:L?2??253?μH?26?12?0C?2?3.14?10??100?10
Q0?VC10??100VS0.1C?CX11?2??100?pF??CX?200pF26?6C?CX?0L?2?3.14?10??253?102?3.14?106?253?10?62?3.14?106?253?10?6RX?????47.7?Ω?QQ02.50.1100?0L?0L11?47.7?j?47.7?j796?Ω??0CX2?3.14?106?200?10?12113?7解:L?2??20.2?μH?ω0C?2?3.14?5?106??50?10?12ZX?RX?jf05?106100Q0???2Δf0.7150?10332Δf1002??5.5?5??10620ξ?Q0???6f035?103??2?2?f0.7,则Q??因2Δf0.721kΩ电阻。 0?0.5Q0,故R?0.5R,所以应并上2πf0CωC3?8证明:4πΔf0.7C??0?g?f02Δf0.7Q
?C?C0?C1?5??20?20?20?18.3?pF?3?9解:C?Ci?2C2?C0?C120?20?20f0?11??41.6?MHz?2πLC2?3.140.8?10?6?18.3?10?12L?100?C120.8?10?6?20.9?kΩ??12?20?20??1022RP?Q0?C2?C0?C1??20?20?20??R??RiRP?R?1020.9???5?5.88?kΩ?0??C120????R?5.88?103QL???28.26?6ω0L2?3.14?41.6?10?0.8?102Δf0.7精品文档
f041.6?106???1.48?MHz?QL28.2
精品文档
3?12解:1?Zf1?02?Zf1?03?Zf1?R
3?13解:1?L1?L2?C1?C2?ρ1?01103??159?μH?2?3.14?10611??159?pF?226?6?01L1?2?3.14?10??159?10ηR1?20M?1??3.18?μH??012?3.14?1062?Zf1??01M?2?R2?2?3.14?10?6?3.18?10?6??20?Ω?202L1159?10?6ZP???25?kΩ??12?R1?Rf1?C1?20?20??159?103?Q1??01L1R1?Rf12?3.14?106?159?10?6??2520?204?2Δf0.7??5?C2f0f0106?20?2?2?2??28.2?kHz?Qρ1R11031?1??2L2??02?2?3.14?950?10?32?159?10?6?177?pF??1?Z22?R2?j??L??021?C???022??1???20?j?2?3.14?106?159?10?6??20?j1006?12?2?3.14?10?177?10??Zf1??01M?2?Z22?2?3.14?10??6?3.18?10?6??0.768?j3.84?Ω?20?j10062
3?15解:?R?L159?10??20????R1RPC50?103?159?10?12?Rf1?0?M?0f0106Q?2?2?1002?f0.714?103
精品文档