第3节 玻尔的原子模型 第4节 氢原子光谱与能级结构
1.了解玻尔理论的主要内容. 2.掌握氢原子能级和轨道半径的规律.(重点+
难点)
3.了解氢原子光谱的特点,知道巴尔末公式及里德伯常量. 4.理解玻尔理论对氢光谱规律的解释.(重点+难点)
一、玻尔原子模型
1.卢瑟福的原子核式结构模型能够很好的解释α粒子与金箔中原子碰撞所得到的信息,但不能解释原子光谱是特征光谱和原子的稳定性.
2.玻尔理论的内容 基本假设 内容 原子只能处于一系列能量不连续的状态中,在这些状态中,原子是稳定的,电子虽然做加速运动,但并不向外辐射能量,这些状态叫做定定态假设 态.电子绕原子核做圆周运动,只能处在一些分立的轨道上,它只能在这些轨道上绕核转动而不产生电磁辐射 原子从一种定态跃迁到另一定态时,吸收(或辐射)一定频率的光子能跃迁假设 量hν,假如,原子从定态E2跃迁到定态E1,辐射的光子能量为hν=E2-E1 原子的不同能量状态对应于电子的不同运行轨道.原子的能量状态是不连续的,电子不能在任意半径的轨道上运行,只有轨道半径r跟电轨道假设 子动量mev的乘积满足下式mevr=n(n=1,2,3,…)这些轨道才2π是可能的.n是正整数,称为量子数
1.(1)玻尔的原子结构假说认为电子的轨道是量子化的.( )
(2)电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.( ) (3)电子能吸收任意频率的光子发生跃迁.( ) 提示:(1)√ (2)√ (3)× 二、氢原子的能级结构
h 1
1.能级:在玻尔的原子理论中,原子只能处于一系列不连续的能量状态,在每个状态中,原子的能量值都是确定的,各个不连续能量值叫做能级.
2.氢原子能级结构图
根据玻尔理论,氢原子在不同能级上的能量和相应的电子轨道半径为
E1En=2(n=1,2,3,…)
nrn=n2r1(n=1,2,3,…)
式中,E1≈-13.6__eV,r1=0.53×10
-10
__m.
根据以上结果,把氢原子所有可能的能量值画在一张图上,就得到了氢原子的能级结构图(如图所示).
n=∞————————E∞=0
?
n=5 ————————E5=-0.54 eV n=4 ————————E4=-0.85 eV n=3 ————————E3=-1.51 eV n=2 ————————E2=-3.4 eV n=1 ————————E1=-13.6 eV
3.玻尔理论对氢原子光谱特征的解释
(1)在正常或稳定状态时,原子尽可能处于最低能级,电子受核的作用力最大而处于离核最近的轨道,这时原子的状态叫做基态.
(2)电子吸收能量后,从基态跃迁到较高的能级,这时原子的状态叫做激发态. (3)当电子从高能级跃迁到低能级时,原子会辐射能量;当电子从低能级跃迁到高能级时,原子要吸收能量.因为电子的能级是不连续的,所以原子在跃迁时吸收或辐射的能量都不是任意的.这个能量等于电子跃迁时始末两个能级间的能量差.能量差值不同,发射的光频率也不同,我们就能观察到不同颜色的光.
1.只要原子吸收能量就能发生跃迁吗?
提示:原子在跃迁时吸收或辐射的能量都不是任意的,只有这个能量等于电子跃迁时始末两个能级的能量差,才会发生跃迁.
三、氢原子光谱
2
1.氢原子光谱的特点
(1)从红外区到紫外区呈现多条具有确定波长(或频率)的谱线;
(2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性. 11?1
2.巴尔末公式:=R?4,5…)其中R叫做里德伯常量,其值为R=1.096 2-2?(n=3,?λ?2n?775 81×10 m.
3.红外区和紫外区:其谱线也都遵循与巴尔末公式类似的关系式.
2.(1)光是由原子核内部的电子运动产生的,光谱研究是探索原子核内部结构的一条重要途径.( )
(2)稀薄气体的分子在强电场的作用下会变成导体并发光.( ) (3)巴耳末公式中的n既可以取整数也可以取小数.( ) 提示:(1)× (2)√ (3)× 四、玻尔理论对氢光谱的解释
1.理论推导:由玻尔理论可知,当激发到高能级E2的电子跃迁到低能级E1时,就会释放出能量.根据
7
-1
En=
-13.6
eV(n=1,2,3,…) 2
n-13.6-13.6
得E2= eV,E1= eV 22
n2n1
再根据hν=E2-E1, 13.6?11?得ν=?2-2?
h?n1n2?
此式在形式上与氢原子光谱规律的波长公式一致,当n1=2,n2=3,4,5,6,…时就是巴尔末公式.
2.巴尔末系:氢原子从相应的能级跃迁到n=2的能级得到的线系.
2.玻尔理论是量子化的理论吗?
提示:不是,玻尔理论的电子轨道是量子化的,并根据量子化能量计算光的发射和吸收频率,这是量子论的方法;而电子轨道的半径是用经典电磁理论推导的,所以玻尔理论是半经典的量子论.
3
对玻尔原子模型的理解
1.轨道量子化:轨道半径只能够是一些不连续的、某些分立的数值.
模型中保留了卢瑟福的核式结构,但他认为核外电子的轨道是不连续的,它们只能在某些可能的、分立的轨道上运动,而不是像行星或卫星那样,能量大小可以是任意的量值.例如,氢原子的电子最小轨道半径为r1=0.053 nm,其余可能的轨道半径还有0.212 nm、0.477 nm、…不可能出现介于这些轨道半径之间的其他值.这样的轨道形式称为轨道量子化.
2.能量量子化:与轨道量子化对应的能量不连续的现象.
电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.
由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的.这样的能量形式称为能量量子化.
3.跃迁:原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即
hν=E2-E1(或E1-E2).
可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上.玻尔将这种现象叫做电子的跃迁.
4.总而言之:根据玻尔的原子理论假设,电子只能在某些可能的轨道上运动,电子在这些轨道上运动时不辐射能量,处于定态.只有电子从一条轨道跃迁到另一条轨道上时才辐射能量,辐射的能量是一份一份的,等于这两个定态的能量差.这就是玻尔理论的主要内容.
(1)处于基态的原子是稳定的,而处于激发态的原子是不稳定的.
(2)原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.
按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选
填“越大”或“越小”).已知氢原子的基态能量为E1(E1<0),电子质量为m,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h).
[思路点拨] 根据玻尔原子理论与能量守恒定律求解.
[解析] 根据玻尔理论,氢原子中电子离原子核越远,氢原子能量越大,根据能量守恒定律可知:
hν+E1=mv2,所以电子速度为:v=
1
2
2(hν+E1)
m.
4
[答案] 越大
2(hν+E1)
m
电子被电离后可认为离原子核无限远,即电子的电势能为零,所以此时电子的能量等于电子的动能.
1.(多选)按照玻尔原子理论,下列表述正确的是( )
A.核外电子运动轨道半径可取任意值
B.氢原子中的电子离原子核越远,氢原子的能量越大
C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=Em-En(m>n) D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量
解析:选BC.根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.
对氢原子能级跃迁的理解
1.能级跃迁
处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.如图带箭头的竖线表示原子由较高能级向较低能级的跃迁.所以一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为:N=
n(n-1)
2
=Cn.
2
2.根据玻尔理论,当氢原子从高能级跃迁到低能级时以光子的形式放出能量.原子在始、末两个能级Em和En(m>n)间跃迁时,辐射光子的能量等于前后两个能级之差(hν=Em-En),由于原子的能级不连续,所以辐射的光子的能量也不连续,因此产生的光谱是分立的线状光谱.
3.原子能量的变化 (1)光子的发射
原子由高能级向低能级跃迁时以光子的形式放出能量,发射光子的频率由下式决定.
5