好文档 - 专业文书写作范文服务资料分享网站

2024年中考数学试卷(word版,含答案) (9)

天下 分享 时间: 加入收藏 我要投稿 点赞

2024年初中学业水平暨高中招生考试数学试题(B卷)(含解答提示)

(全卷共四个大题,满分150分,考试时间120分钟)

b4ac?b2b参考公式:抛物线y=ax+bx+c(a≠0)的顶点坐标为(?,),对称轴公式为x=?.

2a4a2a2

一、选择题(本大题12个小题,每小题4分,共48分)

1.5的绝对值是( ) A、5;B、-5;C、

11;D、?. 55提示:根据绝对值的概念.答案A.

2.如图是一个由5个相同正方体组成的立体图形,它的主视图是( ) ABCD提示:根据主视图的概念.答案D. 3.下列命题是真命题的是( )

A、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为2︰3; B、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为4︰9; C、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为2︰3; D、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为4︰9. 提示:根据相似三角形的性质.答案B. B4.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°, O则∠B的度数为( )

A、60°;B、50°;C、40°;D、30°.

CA提示:利用圆的切线性质.答案B.

5.抛物线y=-3x2+6x+2的对称轴是( )

A、直线x=2;B、直线x=-2;C、直线x=1;D、直线x=-1. 提示:根据试卷提供的参考公式.答案C.

6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )

A、13;B、14;C、15;D、16. 提示:用验证法.答案C.

7.估计5?2?10的值应在( )

A、5和6之间;B、6和7之间;C、7和8之间;D、8和9之间. 提示:化简得35.答案B.

8.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是( ) -x+bx≥3y= 2输入x输出y

x<3y= -2x+b

A、5;B、10;C、19;D、21. 提示:先求出b.答案C.

9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=经过点C,则k的值等于( )

yCB

4k.若反比例函数y?(k?0,x?0)5x

A、10;B、24;C、48;D、50.

提示:因为OC=OA=10,过点C作OA的垂线,记垂足为D,解直角三角形OCD.答案C.

10.如图,AB是垂直于水平面的建筑物,为测量AB的高度,小红从建筑底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC,在点D处放置测角仪,测角仪支架DE的高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1︰2.4,那么建筑物AB的高度约为( )(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

A

E FDA、65.8米;B、71.8米;C、73.8米;D、119.8米.

BC提示:作DG⊥BC于G,延长EF交AB于H.因为DC=BC=52,i=1︰2.4,易得DG=20,CG=48,所以BH=DE+DG=20.8,EH=BC+CG=100,所以AH=51.答案B.

1?x1?2ya??2?(x?7)11.若数a使关于x的不等式组?3有且仅有三个整数解,且使关于y的分式方程???3的解为4y?11?y??6x?2a?5(1?x)正数,则所有满足条件的整数a的值之和是( )

A、-3;B、-2;C、-1;D、1.

提示:由不等式组的条件得:-2.5≤a<3.由分式方程的条件得:a<2且a≠1.综上所述,整数a为-2,-1,0.答案A.

12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1,连接DE,将△AED沿直线沿直线AE翻折至△ABC所在的平面内,得到△AEF,连接DF,过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为( )

A

E

GF

A、8;B、42;C、22?4;D、32?2.

提示:易证△AED≌△AEF≌△BGD,得ED=EF=GD,∠DGE=45°,进而得∠BGD=∠AED=∠AEF=135°,易得△DEG和△DEF都是等腰直角三角形,设DG=x,则EG=2x,注意AB=3,BG=AE=1,∠AEB=90°,可解得x=2?二、填空题(本大题6个小题,每小题4分,共24分) 13.计算:(3?1)0?()?1= . 提示:根据零指数幂、负整数指数幂的意义.答案3.

14.2024年1月1日,“学习强国”平台全国上线,截至2024年3月17日止,重庆市党员“学习强国”APP注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为 . 提示:根据科学记数法的意义.答案1.18×106.

15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是 .

BDC2.答案D. 212

提示:由树状图知总共有36种,符合条件的有3种.答案:

1. 1216.如图,四边形ABCD是矩形,AB=4,AD=22,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是 .

A B DCE

F提示:连AE,易得∠EAD=45°.答案82?8.

17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速度的

5快步赶往学校,并在从家出发后23分钟到4校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为 米. y/米

1380

0111623x/分钟提示:设小明原速度为x米/分钟,则拿到书后的速度为1.25x米/分钟,

家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y米/分钟,由题意及图形得: 11x=(16-11)y且(16-11)(1.25x+y)=1380.解得:x=80,y=176.答案2080.

18.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的

38和.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个43车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先

用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 .

提示:设第一、二、三、四车间每天生产相同数量的产品为x个,则第五车间每天生产的产品为x个,第六五车间每天生产的产品为x个,每个车间原有成品均为m个.甲组有检验员a人,乙组有检验员b人,每个检验员的检验速度为c个/天.由题意得: 6(x+x+x+)+3m=6ac,2(x?38x)?2m?2bc,(2?4)?x?m?4bc由后两式可得m=3x,代入前两式可求得.答案18︰19.438334

三、解答题(本大题7个小题,每小题10分,共70分) 19.计算:

(1)(a+b)2+a(a-2b)

解:原式=a2+2ab+b2+a2-2ab =2a2+b2. (2)m?1?2m?62m?2? m2?9m?3解:原式=m?1? =m?1?m2 =

m?12(m?3)m?3 ?(m?3)(m?3)2(m?1)1 m?1

20.如图,在△ABC中,AB=AC,AD⊥BC于点D.

A(1)若∠C=42°,求∠BAD的度数;

(2)若点E在边AB上,EF∥AC交AD的延长线于点F.

E求证:AE=FE.

解与证:(1)∵AB=AC,AD⊥BC于点D DBC∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°.

F∴∠BAD=∠CAD=90°-42°=48°. (2)∵AB=AC,AD⊥BC于点D, ∴∠BAD=∠CAD ∵EF∥AC, ∴∠F=∠CAD

∴∠BAD=∠F,∴AE=FE.

21.为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下: 活动前被测查学生视力数据:

4.0,4.1,4.1,4.2,4.2,4.3,4.3,4.4,4.4,4.4,4.5,4.5,4.6,4.6,4.6 4.7,4.7,4.7,4.7,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,5.0,5.0,5.1 活动后被测查学生视力数据:

4.0,4.2,4.3,4.4,4.4,4.5,4.5,4.6,4.6,4.6,4.7,4.7,4.7,4.7,4.8 4.8,4.8,4.8,4.8,4.8,4.8,4.9,4.9,4.9,4.9,4.9,5.0,5.0,5.1,5.1 活动前被测查学生视力频数分布直方图活动后被测查学生视力频数分布表 频数分组频数10

84.0≤x<4.2187

4.2≤x<4.426a b4.4≤x<4.64433 74.6≤x<4.82124.8≤x<5.0

04.04.24.44.64.85.05.2视力45.0≤x<5.2

(注:每组数据包括左端值,不包括右端值)

根据以上信息回答下列问题:

(1)填空:a= ,b= ,活动前被测查学生视力样本数据的中位数是 ,活动后被测查学生视力样本数据

的众数是 ;

(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少? (3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果. 解:(1)a=5,b=4,活动前被测查学生视力样本数据的中位数是4.65,活动后被测查学生视力样本数据的众数是4.8; (2)16÷30×600=320.

所以七年级600名学生活动后视力达标的人数有320人.

(3)活动前的中位数是4.65,活动后的中位数是4.8,因此,活动后的视力好于活动前的视力.说明学校开展视力保健活动的效果突出.

22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数——“纯数”.

定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”. 例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.

(1)请直接写出1949到2024之间的“纯数”;

(2)求出不大于100的“纯数”的个数,并说明理由. 解:(1)显然1949至1999都不是“纯数”因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位. 在2000至2024之间的数,只有个位不超过2时,才符合“纯数”的定义. 所以所求“纯数”为2000,2001,2002,2010,2011,2012. (2)不大于100的“纯数”的个数有13个,理由如下: 因为个位不超过2,二位不超过3时,才符合“纯数”的定义.

所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.

23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如下图所示; x … -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 -2 -4 -4 … 经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如下图所示.

(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=-2|x+2|的对称轴. (2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离. (3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小. yy 33 2A2A 11BBOO -6-5-4-3-2-1-112345678x-6-5-4-3-2-1-112345678x -2-2 -3-3 -4-4 -5-5-6-6 -7-7 -8-8 -9-9 解:(1)A(0,2),B(-2,0),函数y=-2|x+2|的对称轴为x=-2.

2024年中考数学试卷(word版,含答案) (9)

2024年初中学业水平暨高中招生考试数学试题(B卷)(含解答提示)(全卷共四个大题,满分150分,考试时间120分钟)b4ac?b2b参考公式:抛物线y=ax+bx+c(a≠0)的顶点坐标为(?,),对称轴公式为x=?.2a4a2a2一、选择题(本大题12个小题,每小题4分,共48分)1.5的绝对值
推荐度:
点击下载文档文档为doc格式
7acb82cb360zdc523xwm17c19373fh00gqm
领取福利

微信扫码领取福利

微信扫码分享