的判别式???m?31??431m?m2?2???31?m??31?5m??0.
31. 5又因为a,b是正整数,所以a?b?31?m?0,从而可得0?m?又因为判别式?是一个完全平方数,验证可知,只有m?6符合要求. 把m?6代入,得ab?31m?m?150.
第二试(B)
一、(本题满分20分)已知t?立,求ab的值.
解:因为t?若正整数a,b,m,使?at?m??bt?m??17m成2?1,
22?1,所以t2?3?22.由?at?m??bt?m??17m,得
abt2?m?a?b?t?m2?17m?0,将t2?3?22代入,得
ab3?22?m?a?b????2?1?m2?17m?0,
?2整理得??m?a?b??2ab???2???3ab?m?a?b??m?17m???0
因为a,b,m是正整数,2是无理数,所以??m(a?b)?2ab?0 2?3ab?m(a?b)?m?17m?0??a?b?2?17?m?于是可得?
2??ab?17m?m因此a,b是关于x的一元二次方程x?2(m?17)x?17m?m?0的两个正整数根, 该方程的判别式??4?m?17??417m?m222?2??4?17?m??17?2m??0.
17 2又因为a,b,m是正整数,所以a?b?2?17?m??0,从而可得0?m?又因为判别式?是一个完全平方数,验证可知,只有m?8符合要求. 把m?8代入,得ab?17m?m?72.
2二、(本题满分25分)在?ABC中,AB?AC,O、I分别是?ABC的外心和内心,且满足AB?AC?2OI, 求证: (1)OI∥BC;
(2)S?AOC?S?AOB?2S?AOI .
证明:(1)过点O作OM?BC于M,过点I作IN?BC于N,
则OM∥IN,设BC?a,AC?b,AB?c,由O、I分别是?ABC的外心和内心,得
CM?111a,CN?(a?b?c),所以MN?CM?CN?(c?b)?OI, 222又MN恰好是两条平行线OM,IN之间的垂线段,所以OI也是两条平行线OM,IN之间的垂线段,所以OI∥MN,所以OI∥BC.
(2)由(1)知OMNI是矩形,连接BI,CI,设OM?IN?r(即为?ABC的内切圆半径),则S?AOC?S?AOB??S?AOI?S?COI?S?AIC???S?AIB?S?AOI?S?BOI?
?2S?AOI?S?BOI?S?COI?S?AIC?S?AIB?2S?AOI?1???2S?AOI?r??OI?(b?c)??2S?AOI2??1111?OI?r??OI?r??AC?r??AB?r22221?1??r??(c?b)?(b?c)??2S?AOI.2?2?222?b2?c2?a2??c2?a2?b2??a2?b2?c2? 三、(本题满分25分)若正数a,b,c满足?????????3
2bc2ca2ab??????b2?c2?a2c2?a2?b2a2?b2?c2??求代数式的值.
2bc2ca2ab解:由于a,b,c具有轮换对称性,不妨设0?a?b?c. (1)若c?a?b,则c?a?b?0,c?b?a?0,从而,得
c?b??a??c?a??b?1, b2?c2?a2c2?a2?b2?1??1,?1?2bc2bc2ca2ca2222?b2?c2?a2??c2?a2?b2??a2?b2?c2?a2?b2?c2?a?b??c??1??1,故?????????3,
2bc2ca2ab2ab2ab??????22222这与已知条件矛盾.
(2)若c?a?b,则0?c?a?b,0?c?b?a,从而,得
c?b??ac?a??b??b2?c2?a2c2?a2?b20??1??1,0??1??1,
2bc2bc2ca2ca2222?a?b??c?1, a2?b2?c2?a?b??ca2?b2?c2??1??1,0??1?2ab2ab2ab2ab2222?b2?c2?a2??c2?a2?b2??a2?b2?c2?故?????????3,这与已知条件矛盾.
2bc2ca2ab??????综合(1)(2)可知,一定有c?a?b.
222b2?c2?a2b2?(a?b)2?a22b2?2ab于是可得??2?1,
2bc2b(a?b)2b?2abc2?a2?b2a2?b2?c2??1. ?1,同理可得
2ab2cab2?c2?a2c2?a2?b2a2?b2?c2???1. 故
2bc2ca2ab