射频连接器知识-名称解释电连接器命名方法 通用射频连接器的型号由主称代号和结构形式代号两部分组成,中间用短横线“-”隔开。其它需说明的情况可在详细轨范中作出规定,并用短横线与结构形式代号隔开。 通用射频连接器的主称代号采用国内、外通用的主称代号。特殊产品的主称代号由详细规范做出具体规定。 通用主称代号说 明 N型外导体内径为7mm(0.276英寸)、特性阻抗50Ω(75Ω)的螺纹式射频同轴连接器。(IEC169-16) BNC型外导体内径为6.5mm(0.256英寸)、特性阻抗50Ω的卡口锁定式射频同轴连接器。(IEC169-8) TNC型外导体内径为6.5mm(0.256英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。(IEC169-17) SMA型外导体内径为4.13mm(0.163英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。(IEC169-15) SMB型外导体内径为3mm(0.12英寸)、特性阻抗50Ω的推入锁定式射频同轴连接器。(IEC169-10) SMC型外导体内径为3mm(0.12英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。(IEC169-9) SSMA型外导体内径为2.79mm(0.11英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。(IEC169-18) SSMB型外导体内径为2.08mm(0.082英寸)、特性阻抗50Ω的推入锁定式射频同轴连接器。(IEC169-19) SSMC型外导体内径为2.08mm(0.082英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。(IEC169-20) SC型(SC-A和SC-B型)外导体内径为9.5mm(0.374英寸)、特性阻抗50Ω的螺纹式(两种型号有不同类型连接螺纹)射频同轴连接器。(IEC169-21) APC7型外导体内径为7mm(0.276英寸)、特性阻抗50Ω的精密中型射频同轴连接器。(IEC457-2) APC3.5型外导体内径为3.5mm(0.138英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。(IEC169-23) K型外导体内径为2.92mm(0.115英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。 OS-50型外导体内径为2.4mm(0.095英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。 F型特性阻抗75Ω的电缆分配系统中使用的螺纹式射频同轴连接器。(IEC169-24) E型特性阻抗75Ω的电缆分配系统中使用的螺纹式射频同轴连接器。(IEC169-27) L型公制螺纹式射频同轴连接器,螺纹连接尺寸在“L”后用阿拉伯数字表示。 通用射频连接器的结构形式代号由下表所示部分组成: 标准顺序分类特征代 号标 志 内 容 插 头插 座 面 板电 缆 1插头或插座插头:T插座:Z(T)/(Z) 2特性阻抗用相应的数字表示/50或75/ 3接触件形式插针:J插孔:KJ(K)K(J)K(J) 4外壳形式直式:不标弯式:WW/W 5安装形式法兰盘:F螺母:Y焊接:HF或Y或HF或Y或HF或Y或H 6接线种类电缆:电缆代号微带:D高频带:不标电缆代号D电缆代号 注:插头装插针、插座装插孔的系列,结构形式中插头和插座的代号(表中序号1) 不标。插头装插孔、插座装插针的系列,用括号中的代号。1.毫米波连接器通常是指工作波长在10mm以下的连接器,是一种超小型微波同轴连接器。它的特点是工作频率高、结构尺寸小、精度要求高。由于连接器的结构尺寸与工作波长相接近,任何微小的变化都会给连接器的电气性能带来严重的影响,这就给连接器结构尺寸带来了高精度的要求。尺寸小,精度高又给制造技术提出了更高的要求。 毫米波同轴连接器从广义上讲,它是一段同轴线,因此同轴线传输的基本理论在这里也是适用的。但是它毕竟又不详同轴线那样简单,由于结构上的需要,引进了绝缘子,内外导体直径出现台阶。它不可能是一个均匀的同轴线,使电场传输特性发生了改变,另外由于制造上的原因,存在不可避免的误差,使连接器的精度受到影响。这一系列问题是连接器理论需要解决的内容。有些可以通过理论分析与计算求的比较合理的设计参数,但是有些问题因数十分复杂,难以进行理论计算,就是计算也不一定准确,只有通过对典型结构的试验,找出他们的规律性,用以指导连接器的理论设计。 2.连接器接口模型 毫米波连接器的插头与插座相连接的接口设计是连接器的关键,它不仅影响到产品的互换性,而且直接影响到连接器的电气性能。连接器的外导体在接口处紧密接触,而阴阳导体在接口处可能出现间隙。毫米波同轴连接器内外导体间除很薄的支撑绝缘子外,全部由空气介质填充,因此,连接器的接口可把它看成一段带绝缘支撑的空气同轴线。 连接器的接口实质是由介质填充和空气填充相结合的一段同轴线,由于结构支撑的需要,内外导体在绝缘子厚度范围常挖有不同深度的槽;又由于制造和安装误差的存在,内外导体直径方向出现不均匀,在径向存在一定的偏心,外导体接触处不可避免地会出现一定的间隙,这样一来同轴线就变得相当复杂,难以进行理论计算。现对模型理想化设计,分析不同因素对连接器的影响。 假设绝缘子厚度B为有限,两绝缘子间距离A足够大,在内、外导体上挖槽深度和间隙都比较小,因此近似认为是一段均匀同轴线。 选择射频连接器,应考虑哪些因素 有许多因素决定了连接器系列和样式,其中配接电缆和使用频率范围是主要的因素。在工程实践中,使连接器直径大小和电缆直径尽可能相近,以最大限度地减少反射。电缆直径和连接器直径之间的区别越大,性能越差。反射通常作为频率的函数增加,而一般较小的连接器在较高的频率段,性能通常很好。对于非常高的频率(26GHz以上),则需要精密的空气介质连接器。
频率范围决定了使用连接器的系列。在我们的网站上,可以查阅各种各样的连接器系列和他们标准的使用频率范围。通常在较低的频率(6 GHz之下),使用推入锁紧式或者刺刀卡锁式连接器。螺纹锁紧式连接通常在高性能,低噪音的环境应用。
通常电缆的规格确定了连接器的阻抗。 50和75欧姆是使用最多的两种标准阻抗,而许多连接器系列具有50欧姆和75欧姆两款阻抗。普通电缆和他们的特性见我司网站。有时在频率500 MHz以下,50欧姆连接器能使用在75欧姆电缆上(反之亦可) 并且性能可接受。这样做的原因是一般地50欧姆连接器便宜,且他们使用广泛。
除了使电缆和连接器在尺寸上尽可能匹配以最大限度地减少误差,连接器的界面和绝缘体材料也是重要的考虑因素。线性对接和空气连接的界面(如SMA和N型界面)能提供高频低反射性能,而重叠的电介质界面(如BNC和SMB)的频率及反射性能通常有所局限。通常反映连接器性能的图表是反射系数表。这是一种描述信号从连接器被反映回来多少的测
量方法。它能用反射系数、电压驻波比(VSWR)和回波损耗来表示.
基于美国通信委员会(FCC,Federal Communications Commission)第15章关于无线电设备非标准界面的扩展要求,许多设计者选用常有标准的连接器接口(如BNC,TNC),但将其极性反转,有时采用反向螺纹介面。
在某些特殊应用上,功率和电压要求也是确定连接器使用的一个因素。 大功率应用将要求使用大直径连接器(例如7-16 DIN和HN型)。 一般传输功率决定于电缆的传输功率,通常根据经验来确定。电压击穿等级决定于峰值电压。 功率传输能力随频率和海拔高度递减。
电压驻波比(VSWR)及其确定 VSWR (Voltage Standing Wave Ratio)是计量信号从连接器返回量的量度标准。它是一个矢量单位包括振幅和相位分量。认识这一点是非常重要的,特别是当我们在考量传输线上多个连接器的复合影响时。阻抗不匹配会导致反射, 如果所使用的电缆是50欧姆的阻抗,那么连接器也必须保持50欧姆阻抗。从电缆到连接器传输线上的尺寸变换,连接器内的绝缘体介质串动和导体的接触损耗是导致非匹配的主要因素。通常确定连接器的VSWR有二种方法,第一种方法是在整个频带内采用“平坦直线限定”法, 例如,对于配接柔性电缆的直型BNC插头,VSWR规定到4 GHz的最大值为1.3:1(通常则写为最大1.3 )。第二种方法是考虑到VSWR在实际情况下是典型的频率直接的函数 ,配接RG-142 B/U电缆的直型SMA插头,VSWR可以描述为:VSWR=1.15 +0 .01* F ( GHz ) 到12.4 GHz 最大频率。 例如,在2 Ghz时,容许最大限度的VSWR将是1.15+2*.01或者最大1.17 。 在12.4 Ghz时它将是1.15+12.4*.01或者最大1.274 。 自然地,这些值能被转换为回波损耗或者反射系数。
插入损耗及其确定插入损耗ρ,定义为: ρ=10*log ( Po/Pi ),单位dB Po----输出功率(Power output) Pi----输入功率(Power input)
产生插入损耗的三种主要原因: 反射损耗,介质损耗和导体损耗。 反射损耗指那些因为驻波而产生连接器的损耗。介质损耗指能量在介质材料(Teflon, rexolite, delrin等)中传播的损耗。导体损耗指能量在连接器导体表面传导而造成的损耗,它与材料选择和电镀的使用相关。通常,连接器插入损耗从几个百分之一dB到几个十分之一dB。同VSWR的指定方法一样,可以指定为“平坦直线限定”或者指定为频率的函数。同VSWR的例子一样,对于配接柔性电缆的直型BNC插头,在最大3 Ghz测试条件下,BNC可以指定为最大0.2 dB。
对于SMA,在6 Ghz测试条件下,可以指定插入损耗ρ=0.06*(f--GHz)dB。例如,在4 Ghz时,插入损耗最大为0.06*2或者0.12 dB。 虽然连接器可以在很宽的频率范围内使用,但通常仅仅在指定的特定频率下测试, 因为对非常小的损耗进行精确测量是一个精确的, 耗时的过程。在MIL PRF-39012中定义了这个测试过程。
如何确定电缆组件的性能 电缆组件有两种受关注的特征性能:电压驻波比VSWR (或者回波损耗)和插入损耗。除了使用极低损失电缆的最短电缆组件(少于6英寸),所有插入损耗主要都是因为电缆本身的衰减原因, 一般可从厂商资料中确定。如何确认RF连接器符合驻波要求另一方面,VSWR主要是由于连接器的原因。 记住VSWR是一矢量数量,当频率扫描时,每个连接器的VSWR将会随相移的波动而上下跳动。在何处出现这些最大值和最小值将依赖于电缆的长度和其介质常数。一般说来,计算出的最大驻波由每一末端连接器的反射系数来确定。最坏的情况是2个反映系数相加。 虽然很小,线缆的返回损耗也是VSWR的一部份。如果忽略电缆的损耗, VSWR将减少。 对于这个例子,我们将忽略电缆的衰减而不作为一个影响因素。例如,我们说一个连接器的在某频率下VSWR为1.2,而另一个连接器是1.25, 电缆VSWR是1.05,把VSWR转换成为反射系数分别为0.091,0.111和0.024,最大反射系数=0.226。转换回VSWR则为1.584。 一种迅速得到结果的方法是乘以这3种的VSWR值, 在这种情况下,它将为1.2*1.25*1.05=1.575。 这非常接近于以前的计算结果. 对于回波损耗,VSWR能被转变成为dB。如果每个连接器的回波损耗是不同的或者如果电缆回波损耗是不可忽略的,那么每种回波损失将不得不被转换成为反射系数被增加然后再被转换