数字电路答案 第一章习题
1-1 (1)22102*816*80268
268101102(2) 10810 1548260101101011021616
4*801548
00010110161*825*8115400110110011011002
6C16
1*8111011002(3)13.12510
15.18011011006C1*815*8015.18
15.10011010011101.0012
D.216
3*805*81 1101.00121101.0010D2(4)131.62510 203.582*820*81203.58
203.501000001110110000011.1012
83.A16
10000011.10121-2
(1)1011012 1011012 55810000011.101083A10110155558 2D16
4510
001011012D5*815*80(2)1110010120111001013453458 E516
22910
11100101234583*8211100101E54*815*80(3)101.00112101.0011005145.148 5.316
4*82101.00112 5.1480101.00115315*801*85.187510
(4)100111.1012 100111.10121100111.10147447.48
27.A16
00100111.101027A 47.58?4*8?7*8?5*8 1-3 (1)168 168 11102(2)1728 1728 1111010(3)61.5380?1?39.62510
1*816*801410
1600111011102 E16
7*812*8012210
1110E1*8217200111101011110102
2?0111?1010??7A16
7A6*811*805*813*8249.67210
61.53861.53110001101011110001.1010112 00110001.1010110031AC1110001.1010112(4)126.748 126.74831.AC16
4*821*822*816*807*886.937510
126.740010101101111001010110.11112
56.F16
1010110.111121-4 (1)2A16 1010102 52801010110.111156F2A001010101010102
528
4210
101010525*812*80(2)B2F16B2F1011001011111011001011112
54578
286310
1011001011112 54578(3)D3.E1610110010111154575*834*825*817*80D3.E11010011111011010011.1112
323.78
1 11010011.1112 323.78(4)1C3.F916011010011.11132373*822*813*807*8211.87510
1C3.F900011100001111111001111000011.111110012
703.7628
2 111000011.111110012 703.76281-5
(1)A(B?C)?AB?AC
A 0 0 0 0 1 1 1 1
左式=右式,得证。
111000011.11111001070371627*820*813*807*86*82*83451.972610
B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 左式 0 0 0 0 0 1 1 1 右式 0 0 0 0 0 1 1 1 (2)A?BC?(A?B)(A?C)
A 0 0 0 0 1 1 1 1 左式=右式,得证。
B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 左式 0 0 0 1 1 1 1 1 右式 0 0 0 1 1 1 1 1 (3)A?B?AB
A 0 0 1 1 左式=右式,得证。 (4)AB?A?B
A 0 0 1 1 左式=右式,得证。 (5)A?BC?ABC?1
A 0 0 0 0 1 1 1 1 左式=右式,得证。 (6)AB?AB?AB?AB
A 0 0 1 1 左式=右式,得证。 (7)A?B?A?B
A 0 0 1 1 左式=右式,得证。 B 0 1 0 1 左式 0 1 1 0 右式 0 1 1 0 B 0 1 0 1 左式 0 1 1 0 右式 0 1 1 0 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 左式 1 1 1 1 1 1 1 1 右式 1 1 1 1 1 1 1 1 B 0 1 0 1 左式 1 1 1 0 右式 1 1 1 0 B 0 1 0 1 左式 1 0 0 0 右式 1 0 0 0 (8)AB?BC?CA?AB?BC?CA
A 0 0 0 0 1 1 1 1 左式=右式,得证。 1-6 (1)AB 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 左式 0 1 1 1 1 1 1 0 右式 0 1 1 1 1 1 1 0 ABBABCD1 BAA
证:A(2)ABBA11
BA 证:A?BA?CD?A?ACD?A?ACD?A(1?CD)?A (3)AB
ACBCACABBCC
AB(AB)CABABCABC
证:AB(4)AB
ACB(DE)CABAC ABACBC(DE)ABAC
证:ABACB(DE)C(5)A
BABBBCAB ABCA证:AABABCABABAABAB
(6)ABABC
证:AB(7)ABDBCBCDCAAD(AABCB)(BC)(CABCDA)ABCADABC
ABBC
证:原式=ABD?ABCD?BCD?AD?ABC?ABCD(再加一次最后一项)
BD(AAC)BCDADBC(AAD)
BD(AC)BCDADBCAD