找家教,到 阳光家教网 全国最大家教平台 5-4=1(千米)
(3)走完这12千米的差数甲要走几小时呢?
12÷1=12(小时)
(4)这段路长多少千米?
5×12=60(千米)
综合算式:
5×[4×3÷(5-4)]
=5×[12÷1] =5×12 =60(千米) 答略。
解:此题是“差倍”问题的变形。
北京家教 找家教上阳光家教网
找家教,到 阳光家教网 全国最大家教平台
答略。
两堆煤原来各有多少吨?(适于六年级程度)
解:这里已知两堆煤的总数和运走的总数,不知道两堆煤在总数中占多大比率,也无法把运走的煤分为甲堆运走的和乙堆运走的。虽然知道甲堆运
知道,无法发生联系,因此这两个分率无法参加运算。
本题的难点在于两堆煤运走的分率不同,若分率相同,分析就会有所进展。
然后再看假设引出了什么差异。已知条件告诉我们共运走180吨,与方才算得的162吨相差180-162=18(吨),为什么会产生这18吨的差异呢?
北京家教 找家教上阳光家教网
找家教,到 阳光家教网 全国最大家教平台
270-120=150(吨)????????甲堆 答略。
*例11 祖父给兄弟二人同样数目的零花钱,祖母给了哥哥1100日元,给了弟弟550日元,这样兄弟二人所得到的零花钱数的比为7∶5。求祖父给兄弟二人的钱数都是多少日元?(适于六年级程度)
解:因为祖父给兄弟二人的钱数相同,所以祖母给兄弟二人的钱数之差,就是他们分别得到的所有零花钱钱数之差。
1100-550=550(日元)
由兄弟二人所得到的零花钱钱数的比为7∶5可知,把哥哥的钱看成是7份的话,弟弟的钱数就是5份,它们相差:
7-5=2(份)
所以,每一份的钱数是:
550÷2=275(日元)
哥哥有零花钱:
275×7=1925(日元)
其中祖父给的是:
1925-1100=825(日元)
北京家教 找家教上阳光家教网
找家教,到 阳光家教网 全国最大家教平台 答:祖父给兄弟二人的钱都是825日元。
*例12 一位牧羊人赶着一群羊走过来,小明问他:“你的羊群里有山羊、绵羊各几只?”牧羊人说:“山羊的只数加上99只就是绵羊的只数,绵羊的只数加上99只就是山羊的3倍,你去算吧。”请你帮助小明算一算。(适于五年级程度)
解:由“山羊的只数加上99只就是绵羊的只数”知道,绵羊比山羊多99只。由“绵羊的只数加上99只就是山羊的3倍”知道,绵羊的只数加上99只后,绵羊的只数比山羊多(99+99)只。此时,如果把山羊只数看作1倍,绵羊只数就是3倍,比山羊多(3-1)倍,这(3-1)倍正好是(99+99)只(图22-1)。用除法可以求出1倍数(山羊只数),再用加法就可以求出绵羊只数。
(99+99)÷(3-1)
=198÷2
=99(只)???????山羊只数 99+99=198(只)????绵羊只数 答略。
*例13 某工厂有大、小两个车间。如果从小车间调10人到大车间,则大车间的人数是小车间的3倍;如果从大车间调30人到小车间,则两个车间的人数相等。求大、小两个车间各有多少人?(适于高年级程度)
解:根据“如果从大车间调30人到小车间,则两个车间的人数相等”知道,大车间比小车间多30×2人;根据“如果从小车间调10人到大车间,则大车间的人数是小车间的3倍”知道,这样调动后,大车间比小车间多(30×2+10×2)人。把调动后小车间的人数看作1倍数,则大车间的人数就是3倍数,比小车间的人数多(3-1)倍数,这(3-1)倍数正好是(30×2+10×2)人。用除法可以求出1倍数(调动后,小车间人数),加上10就得小车间原有人数。
(30×2+10×2)÷(3-1)+10
=80÷24+10
北京家教 找家教上阳光家教网
找家教,到 阳光家教网 全国最大家教平台 =50(人)??????(小车间原有人数) 50+30×2=110(人)?(大车间原有人数) 答略。
在差倍问题中,有一类比较特殊,这就是年龄问题。年龄问题一般用差倍问题的解题思路、计算公式来分析、解答。但要注意年龄问题所单独具有的“定差”特点,即大、小两个年龄,相当于大、小两个数,无论现在、过去、将来,这两个年龄的差不变。抓住这个特点,再利用差倍问题的数量关系和解题方法,便可解答年龄问题。
*例14 今年哥哥18岁,弟弟8岁。问几年前哥哥的年龄是弟弟的3倍?(适于高年级程度)
解:作图22-2。
哥哥和弟弟年龄之差(18-8)岁始终不变。把几年前弟弟的年龄看作1倍数,哥哥的年龄就是3倍数,比弟弟多(3-1)倍数,这(3-1)倍数正好对应于(18-8)岁。用除法可以求出1倍数,就是几年前弟弟的年龄,再用减法便可求出几年前哥哥的年龄是弟弟的3倍。
8-(18-8)÷(3-1)=3(年)
答略。
*例15 今年父亲40岁,儿子4岁。问几年后父亲的年龄是儿子的4倍?(适于高年级程度)
解:作图22-3。
北京家教 找家教上阳光家教网