第一章 集合与常用逻辑用语
§1.1 集合的概念与运算
一、知识导学
1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合. 2.元素:集合中的每一个对象称为该集合的元素,简称元.
3.子集:如果集合A的任意一个元素都是集合B的元素(若a?A则a?B),则称 集合A为集合B的子集,记为A?B或B?A;如果A?B,并且A?B,这时集合A称为集合B的真子集,记为AB或B
A.
4.集合的相等:如果集合A、B同时满足A?B、B?A,则A=B.
5.补集:设A?S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记 为 CsA.
6.全集:如果集合S包含所要研究的各个集合,这时S可以看做一个全集,全集通常 记作U.
7.交集:一般地,由所有属于集合A且属于B的元素构成的集合,称为A与B的交集, 记作A?B.
8.并集:一般地,由所有属于集合A或者属于B的元素构成的集合,称为A与B的并 集,记作A?B.
9.空集:不含任何元素的集合称为空集,记作?. 10.有限集:含有有限个元素的集合称为有限集. 11.无限集:含有无限个元素的集合称为无限集.
12.集合的常用表示方法:列举法、描述法、图示法(Venn图).
13.常用数集的记法:自然数集记作N,正整数集记作N+或N,整数集记作Z,有理数集记作Q,实数集记作R. 二、疑难知识导析
1.符号?,,?,
,=,表示集合与集合之间的关系,其中“?”包括“”和“=”
*两种情况,同样“?”包括“”和“=”两种情况.符号?,?表示元素与集合之间的关系.要注意两类不同符号的区别.
2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.
3.在集合运算中必须注意组成集合的元素应具备的性质.
4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式
中,B=?易漏掉的情况.
5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.
6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.
7.在集合运算过程中要借助数轴、直角坐标平面、Venn图等将有关集合直观地表示出来.
8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用. 9.含有n个元素的集合的所有子集个数为:2n,所有真子集个数为:2n-1
三、经典例题导讲
2[例1] 已知集合M={y|y =x+1,x∈R},N={y|y =x+1,x∈R},则M∩N=( ) A.(0,1),(1,2) B.{(0,1),(1,2)} C.{y|y=1,或y=2} D.{y|y≥1}
?y?x2?1?x?0?x?1错解:求M∩N及解方程组? 得? 或 ? ∴选B
?y?1?y?2?y?x?1错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素
是什么.事实上M、N的元素是数而不是实数对(x,y),因此M、N是数集而不是点集,
2M、N分别表示函数y=x+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集.
2正解:M={y|y=x+1,x∈R}={y|y≥1}, N={y|y=x+1,x∈R}={y|y∈R}. ∴M∩N={y|y≥1}∩{y|(y∈R)}={y|y≥1}, ∴应选D.
22注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x+1,x∈R},这三个集合是不同的.
[例2] 已知A={x|x2-3x+2=0},B={x|ax-2=0}且A∪B=A,求实数a组成的集合C.
错解:由x2-3x+2=0得x=1或2.
当x=1时,a=2, 当x=2时,a=1.
错因:上述解答只注意了B为非空集合,实际上,B=时,仍满足A∪B=A. 当a=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}. 正解:∵A∪B=A ∴B
A 又A={x|x2-3x+2=0}={1,2}
1或?2? ∴C={0,1,2} ∴B=或??
[例3]已知m?A,n?B, 且集合A=?x|x?2a,a?Z?,B=?x|x?2a?1,a?Z?,又C=?x|x?4a?1,a?Z?,则有: ( )
A.m+n?A B. m+n?B C.m+n?C D. m+n不属于A,B,C中任意一个 错解:∵m?A,∴m=2a,a?Z,同理n=2a+1,a?Z, ∴m+n=4a+1,故选C
错因是上述解法缩小了m+n的取值范围.
正解:∵m?A, ∴设m=2a1,a1?Z, 又∵n?B,∴n=2a2+1,a2? Z , ∴m+n=2(a1+a2)+1,而a1+a2? Z , ∴m+n?B, 故选B.
[例4] 已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若B实数p的取值范围.
错解:由x2-3x-10≤0得-2≤x≤5.
A,求
欲使B
??2?p?1A,只须???3?p?3
2p?1?5?∴ p的取值范围是-3≤p≤3.
错因:上述解答忽略了\空集是任何集合的子集\这一结论,即B=时,符合题设. 正解:①当B≠时,即p+1≤2p-1p≥2. 由BA得:-2≤p+1且2p-1≤5. 由-3≤p≤3. ∴ 2≤p≤3
②当B=时,即p+1>2p-1p<2. 由①、②得:p≤3.
点评:从以上解答应看到:解决有关A∩B=、A∪B=,AB等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.
2
[例5] 已知集合A={a,a+b,a+2b},B={a,ac,ac}.若A=B,求c的值.
分析:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.
解:分两种情况进行讨论.
22
(1)若a+b=ac且a+2b=ac,消去b得:a+ac-2ac=0,
a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0. 2
∴c-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.
22
(2)若a+b=ac且a+2b=ac,消去b得:2ac-ac-a=0,
2
∵a≠0,∴2c-c-1=0,
即(c-1)(2c+1)=0,又c≠1,故c=-
1. 21?A,a?1且1?A.
1?a点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. [例6] 设A是实数集,满足若a∈A,则
⑴若2∈A,则A中至少还有几个元素?求出这几个元素. ⑵A能否为单元素集合?请说明理由. ⑶若a∈A,证明:1-
1∈A. a⑷求证:集合A中至少含有三个不同的元素.
1∈A ? 2∈A 21∴ A中至少还有两个元素:-1和
21⑵如果A为单元素集合,则a=
1?a解:⑴2∈A ? -1∈A ? 即a?a?1=0
2
该方程无实数解,故在实数范围内,A不可能是单元素集 ⑶a∈A ?
1∈A ? 1?a11?11?a∈A?
1?a?1A,即1-∈A
a1?a?11111∈A, 1-∈A .现在证明a,1-, 三数互不相等.
aa1?a1?a11①若a=,即a2-a+1=0 ,方程无解,∴a≠
1?a1?a112
②若a=1-,即a-a+1=0,方程无解∴a≠1-
aa1111 ③若1- =,即a2-a+1=0,方程无解∴1-≠.
a1?aa1?a⑷由⑶知a∈A时,
综上所述,集合A中至少有三个不同的元素.
点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.
[例7] 设集合A={a|a=n?1,n∈N},集合B={b|b=k?4k?5,k∈N},试证:
+
+
22AB.
证明:任设a∈A,
则a=n?1=(n+2)-4(n+2)+5 (n∈N),
2
+
2∵ n∈N*,∴ n+2∈N* ∴ a∈B故
①
显然,1?A?a|a?n?1,n?N+
?2*?,而由
2+
2B={b|b=k?4k?5,k∈N}={b|b=(k?2)?1,k∈N}知1∈B,于是A≠B
②
由①、② 得AB.
点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系. (2)判定两集合相等,主要是根据集合相等的定义. 四、典型习题导练
1.集合A={x|x-3x-10≤0,x∈Z},B={x|2x-x-6>0, x∈ Z},则A∩B的非空真子集的个数为( )
A.16 B.14 C.15 D.32 2.数集{1,2,x-3}中的x不能取的数值的集合是( )
A.{2,-2 } B.{-2,-5 } C.{±2,±5 } D.{5,-5}
3. 若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于( ) A.P B.Q C. D.不知道
4. 若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有( ) A.P∩Q= B.P Q C.P=Q D.P
22
2
Q
5.若集合M={x|1( ) ?1},N={x|x2≤x},则M?N=
x A.{x|?1?x?1} B.{x|0?x?1} C.{x|?1?x?0} D.?
6.已知集合A={x|x2+(m+2)x+1=0,x∈R},若A∩R+=,则实数m的取值范围是
_________.
27.(06高考全国II卷)设a?R,函数f(x)?ax?2x?2a.若f(x)?0的解集为A,
B??x|1?x?3?,AB??,求实数a的取值范围。
8.已知集合A=x|x?ax?12b?0和B=x|x?ax?b?0满足
?2??2?CIA∩B=?2?,A∩CIB=?4?,I=R,求实数a,b的值.