测程小于3KM,一般精度为±(5mm+5ppm),主要用于普通测量和城市测量。
(2)中测程全站仪
测程为3-15km,一般精度为±(5mm+2ppm)-,±(2mm+2ppm)通常用于一般等级的控制测量。 (3)长测程全站仪
测程大于15km,一般精度为±(5mm+1ppm),通常用于国家三角网及特级导线的测量。
结构
概述
同电子经纬仪、光学经纬仪相比,全站仪增加了许多特殊部件,因此而使得全站仪具有比其它测角、测距仪器更多的功能,使用也更方便。这些特殊部件构成了全站仪在结构方面独树一帜的特点。 同轴望远镜
全站仪的望远镜实现了视准轴、测距光波的发射、接收光轴同轴化。同轴化的基本原理是:在望远物镜与调焦透镜间设置分光棱镜系统,通过该系统实现望远镜的多功能,即既可瞄准目标,使之成像于十字丝分划板,进行角度测量。同时其测距部分的外光路系统又能使测距部分的光敏二极管发射的调制红外光在经物镜射向反光棱镜后,经同一路径反射回来,再经分光棱镜作用使回光被光电二极管接收;为测距需要在仪器内部另设一内光路系统,通过分光棱镜系统中的光导纤维将由光敏二极管发射的调制红外光传也送给光电二极管接收 ,进行而由内、外光路调制光的相位差间接计算光的传播时间,计算实测距离。
同轴性使得望远镜一次瞄准即可实现同时测定水平角、垂直角和斜距等全部基本测量要素的测定功能。加之全站仪强大、便捷的数据处理功能,使全站仪使用极其方便。 双轴自动补偿
在仪器的检验校正中已介绍了双轴自动补偿原理,作业时若全站仪纵轴倾斜,会引起角度观测的误差,盘左、盘右观测值取中不能使之抵消。而全站仪特有的双轴(或单轴)倾斜自动补偿系统,可对纵轴的倾斜进行监测,并在度盘读数中对因纵轴倾斜造成的测角误差自动加以改正(某些全站仪纵轴最大倾斜可允许至±6′)。,也可通过将由竖轴倾斜引起的角度误
16
差,由微处理器自动按竖轴倾斜改正计算式计算,并加入度盘读数中加以改正,使度盘显示读数为正确值,即所谓纵轴倾斜自动补偿。
双轴自动补偿的所采用的构造(现有水平,包括Topcon,Trimble):使用一水泡(该水泡不是从外部可以看到的,与检验校正中所描述的不是一个水泡)来标定绝对水平面,该水泡是中间填充液体,两端是气体。在水泡的上部两侧各放置一发光二极管,而在水泡的下部两侧各放置一光电管,用一接收发光二极管透过水泡发出的光。而后,通过运算电路比较两二极管获得的光的强度。当在初始位置,即绝对水平时,将运算值置零。当作业中全站仪器倾斜时,运算电路实时计算出光强的差值,从而换算成倾斜的位移,将此信息传达给控制系统,以决定自动补偿的值。自动补偿的方式初由微处理器计算后修正输出外,还有一种方式即通过步进马达驱动微型丝杆,把此轴方向上的偏移进行补正,从而使轴时刻保证绝对水平。 键盘
键盘是全站仪在测量时输入操作指令或数据的硬件,全站型仪器的键盘和显示屏均为双面式,便于正、倒镜作业时操作。 存储器
全站仪存储器的作用是将实时采集的测量数据存储起来,再根据需要传送到其它设备如计算机等中,供进一步的处理或利用,全站仪的存储器有内存储器和存储卡两种。
全站仪内存储器相当于计算机的内存(RAM),存储卡是一种外存储媒体,又称PC卡,作用相当于计算机的磁盘。 通讯接口
全站仪可以通过RS-232C通讯接口和通讯电缆将内存中存储的数据输入计算机,或将计算机中的数据和信息经通讯电缆传输给全站仪,实现双向信息传输。
使用
全站仪具有角度测量、距离(斜距、平距、高差)测量、三维坐标测量、导线测量、交会定点测量和放样测量等多种用途。内置专用软件后,功能还可进一步拓展。 全站仪的基本操作与使用方法 :
水平角测量
(1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A。
17
(2)设置A方向的水平度盘读数为0°00′00〃。
(3)照准第二个目标B,此时显示的水平度盘读数即为两方向间的水平夹角。
距离测量
(1)设置棱镜常数
测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。 (2)设置大气改正值或气温、气压值
光在大气中的传播速度会随大气的温度和气压而变化,15℃和760mmHg是仪器设置的一个标准值,此时的大气改正为0ppm。实测时,可输入温度和气压值,全站仪会自动计算大气改正值(也可直接输入大气改正值),并对测距结果进行改正。 (3)量仪器高、棱镜高并输入全站仪。 (4)距离测量
照准目标棱镜中心,按测距键,距离测量开始,测距完成时显示斜距、平距、高差。
全站仪的测距模式有精测模式、跟踪模式、粗测模式三种。精测模式是最常用的测距模式,测量时间约2.5S,最小显示单位1mm;跟踪模式,常用于跟踪移动目标或放样时连续测距,最小显示一般为1cm,每次测距时间约0.3S;粗测模式,测量时间约0.7S,最小显示单位1cm或1mm。在距离测量或坐标测量时,可按测距模式(MODE)键选择不同的测距模式。
应注意,有些型号的全站仪在距离测量时不能设定仪器高和棱镜高,显示的高差值是全站仪横轴中心与棱镜中心的高差。
坐标测量
(1)设定测站点的三维坐标。
(2)设定后视点的坐标或设定后视方向的水平度盘读数为其方位角。当设定后视点的坐标时,全站仪会自动计算后视方向的方位角,并设定后视方向的水平度盘读数为其方位角。
(3)设置棱镜常数。
(4)设置大气改正值或气温、气压值。 (5)量仪器高、棱镜高并输入全站仪。
(6)照准目标棱镜,按坐标测量键,全站仪开始测距并计算显示测点的三维坐标。
全站仪的数据通讯
全站仪的的数据通讯是指全站仪与电子计算机之间进行的双向数据交换。全站仪
18
与计算机之间的数据通讯的方式主要有两种,一种是利用全站仪配置的PCMCIA(personal computer memory card internation association,个人计算机存储卡国际协会,简称PC卡,也称存储卡)卡进行数字通讯,特点是通用性强,各种电子产品间均可互换使用;另一种是利用全站仪的通讯接口,通过电缆进行数据传输。
前景
随着计算机技术的不断发展与应用以及用户的特殊要求与其它工业技术的应用,全站仪出现了一个新的发展时期,出现了带内存、防水型、防爆型、电脑型等等的全站仪。
目前,世界上最高精度的全站仪:测角精度(一测回方向标准偏差)0.52,测距精度 1mm+1ppm。利用ATR(Auto Targets Recognition,自动目标识别)功能,白天和黑夜(无需照明)都可以工作。全站仪已经达到令人不可致信的角度和距离测量精度,既可人工操作也可自动操作,既可远距离遥控运行也可在机载应用程序控制下使用,可使用在精密工程测量、变形监测、几乎是无容许限差的机械引导控制等应用领域。
全站仪这一最常规的测量仪器将越来越满足各项测绘工作的需求,发挥更大的作用。
全站仪的测角系统与传统光学经纬仪测角系统不同点 全站仪的测角系统与传统光学经纬仪测角系统相比较,主要有两个方面的不同:
(1)传统的光学度盘被绝对编码度盘或光电增量编码器所代替,用电子细分系统代替了传统的光学测微器;
(2)由传统的观测者判读观测值及手工记录变为观测者直接读数并自动记录。 全站仪的测距系统与一般测距仪基本一致,只是体积更小,通常采用半导体砷化镓发光二极管作为光源。不同厂家生产的不同类型及系列的全站仪,其最大测程和距离测量误差均有较大变化。
全站仪的记录系统又称为电子数据记录器,它是一种存储测量资料的具有特定软件的硬件设备。数据记录器也有许多类型,但基本功能都一样,起着全站仪与电子计算机之间的桥梁作用,它使野外记录工作实现了自动化,减少了记录计算的差错,大大提高了野外作业的效率。目前,全站仪记录系统主要有三种形式:接口式、磁卡式和内存式
19
第二节 混凝土基础施工机械及设备
常用的混凝土基础施工机械及设备有搅拌机械、振捣器、混凝土运输设备以及模板等。
一、混凝土搅拌机
混凝土搅拌机是使混凝土配合料均匀拌和,制备混凝土的专用机械,是现代化建设施工中不可缺少的机械设备。为了适应不同混凝土搅拌要求,搅拌机有多种机型。
按工作性质分有周期式和连续式搅拌机; 按搅拌原理分有自落式和强制式搅拌机;
按搅拌机的移动程度和安装方法分固定式搅拌机和移动式搅拌机; 按搅拌机卸料出料情形分旁出料式搅拌机、端出料式搅拌机和反转出料式搅拌机。
连续搅拌机又称为连续作用式搅拌机。这种搅拌机无论是装料、拌合、卸料等工序都是连续、不间断地进行的。即一端加入各混合料,经过机械内部拌合,从另一端送出混凝土,无须中途停顿。
这种搅拌机的特点是:第一、搅拌机开动以后.装料、拌合、卸料可以不间断地进行,能够连续不断地生产出混凝土,因而生产效率高;第二,材料拌合的均匀性不易检查,拌合时间短,材料拌合的均匀性较差,因而它所调制的混凝土品质不能均匀;第三,在构造上较复杂,制造困难,成本较高。
分批搅拌机又称为周期作用式搅拌机或称为筒形搅拌机,这种搅拌机无论是装料、拌合、卸料等工序都是周期性间断地进行,而且每一次新的拌合料加入之前,只有当前一次已经拌合好的拌合料卸出后才能进行。这种机械主要部分为一个空心的搅拌筒(有各种形式),每批装入配合好的拌合料调入简内,随着筒身不断的滚转拌成混凝土。这种搅拌机之所以称为分批,即是等已经拌好的混凝土卸空后,方可将新料倒入筒内,近行下次的拌制之意。分批搅拌机与连续搅拌机相比较,其特点是:第一,构造简单,而且体积小,制造容易,成本低;第二,在拌合过程中,容易精确地量配材料,改变材料的成分和允许调签工作循环的时间.从而能保证或及时棱台材料拌合的均匀程度。 按搅拌原理分有自落式和强制式搅拌机; 1. 自落式混凝土搅拌机
自落式搅拌机又称为自由落下式搅拌饥。即材料自由下落方式的搅拌机。自落式混凝土搅拌机适用于搅拌塑性混凝土。这类搅拌机的搅拌筒内壁焊有弧形叶片。工作原理如图2--2(a)所示。将混合料放在一个旋转的搅拌鼓内,随着搅拌鼓的旋转,鼓内的叶片把混合料提升到一定的高度,在重力作用下
20