专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印
1y?(0)??
720.已知f??x??解得x?x0?x0y0,
x0y0 1dy?x?1?,求 ,y?f??xdx?x?1?令x?0,y?y0?解得y?y0?解:(1)y??f???x?1??x?1???x?1? ??2?x?1??x?1?x0y0
(3)证明两截距之和为a(即x?y?a)
??2?x?1?2?x?1?f???
x?1??x?y?x0?y0+2x0y0 (2)?f??x??1 x?????x0??2?y02?2?2x0y0?
??2??x?1?x?1 ?f????x?1x?1??dy?2x?1?2?? 22dx?x?1?x?1x?1四、证明题(本题8分) 21.证明抛物线x??x0?y0???a?2?a
证毕
五、综合题(每小题10分,共30分) 22.若曲线y?x?ax?b与2y??1?xy在点?1,?1?相切,求常数a,b。 解:(1)求两曲线的斜率
在y?x?ax?b上,y??2x?a,y??1??2?a
23y?a任一点处的切线所截两坐标轴的截距之和等于a。 证:(1)求切线方程:设切点坐标为?x0,y0?
32y??y?3xyy?,y??1??1 在y??1?xy上,
32?12x?12yy??0,y???y0 x0y x2)求a,b之值:依题意,?两曲线在点?1,?1?相切,
?y??x0????2?a?1,a??1,
又?点?1,?1?在曲线y?x?x?b上
2故有切线方程:
yy?y0??0?x?x0?
x0(2)求截距: 令y?0,?y0????1?12?1?b,b??1
23.设y?f?x?单调,且二阶可导,求
dx及dyy0?x?x0? x021
d2xf??x??0? 2?dy
专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印
解:(1)
dx11 ??dy?dyf?x?dx(2)∵f?0??0?cosf?0??1,sinf?0??0(3)y??0??cosf?0??f??0??cosf?0??f??0?
1d2x?dx?d(2)= ?2?fxdydydy??1d1dx0?f???x????=
dxf??x?dy?f??x??2f??x?????f???x???f??x???3???cosf?0??????f??0??????f??0???
2.设f?x?有任意阶导数,且
(n)f??x????f?x???,求f?x?
2222
解:∵f??x??f2?x?
324.设y?arctan1?x,求y?? 1?x1∴f???x??2f?x?f??x??2f?x?
dx?解:(1)dy(1?x)2?1?x??? 2?1?x??1?x??1????1?x?2f????x??2?3f2?x?f??x??2?3f4?x?,??? f?n??x??n!fn?1?x?
?(1?x)2??1?x???(1?x)??1?x?(1?x)23.设f?x?可导且f?x??0, 证明
??2?1 ?222(1?x)(1?x)f??x?dlnf?x?? dxf?x?解:(1)当f(x)?0时
?1?(2)y????1??1?x2??
???? ?1?x选做题
?2?2??2x?2xdd1lnf?x??lnf?x??f??x? dxdxf?x?
(2)当f?x??0时:
?1?x?22inx1.设f可导,y?sinf????s??且
??dd lnf?x??ln??f?x????dxdx???f??x?f?x??f??x?f?x?
f(0)?0,求y?(0)
解:(1)y??cosf??sinf?x???
??(3)综上所述:
?f???sinf?x????cosf?x??f??x?
22
f??x?dlnf?x?? dxf?x?