专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印
解:(1)?f?x?在x?0连续, ?xlim3?0??ax?bx2?cx?d??d
xlim?0??x2?x??0,f?0??0 故d?0??1?
(2)?f?x?在x?0可导
?limx2f?x???0?x?0?x?1,
fax3?bx2?cx???0??limx?0x?c
故有c?1??2?
(3)?f?x?在x?1连续,
?lim32x?1??ax?bx?x??f?1? 即a?b?1?f?1??0
?a?b?1?0??3?
(4)?f?x?在x?0可导:
?f?1??limx2?x??x?1?x?1?1
f??limax3?bx2?x???1x?1?x?1
??0??0??xlim?1??3ax2?2bx?1? ?3a?2b?1
故有3a?2b?0??4? 由(3)(4)解得a?2,b??3 答:a?2,b??3,c?1,d?0 五、证明题(每小题9分,共18分) 23. 证明x4?2x?4?0在区间??2,2?内至少有两个实根。
证:(1)?f(x)在??2,0?连续, 且f?0???4?0,f??2??16?0
?由零点定理知,
f(x)=0在??2,0?上至少有一个实根。
(2)?f(x)在?0,2?连续,且
f?0???4?0,f?2??16?4?8?0
?由零点定理知,
f(x)=0在?0,2?上至少有一个实根
(3)综上所述,f(x)=0在??2,2?上至少有两个实根
?124. 设f?x????xusin,x?0,证明(1)?x?0,x?0当u?0时f?x?在x?0连续,当u?1时,
f?x?在x?0可导
解:(1)?limxu1u?0时x?0sinx0
16
专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印
?1uu?0?sin?1,limx0? ?x?0x??第四讲:导数与微分的计算方法的强化练习题答案
一、单项选择题(每小题4分,共24分) 1.设fx?当u?0时,f?x?在x?0连续 1x?limxu?1sin1u?1时0 (2)?limx?0x?0x?1xxusin?1u?1u?1??sin?1,limx0? ?x?0x??当u?1时,f?x?在x?0可导 总之,当u?0时,f?x?在x?0连续 当u?1时,f?x?在x?0可导 选做题
设对于任意的x,函数满足f?1?x??
???x24?x2?1,则f??1??( )
2A .1 B .3 C. -1 D. -3
22解:(1)?fx?x?????x2?1
?f?x??x2?x?1
(2) f??x??2x?1,f???1???2?1??1 选C
2.设f?x??xx?12?2??x2?22?
?x?n?22?,则f??0?? ( )
n2af?x?且f??0??b,证明f??1??a?b
证:(1)令x?0,f?1?0? ?af?0?,即
2A .(n!) B. ??1?(n!)
C. n! D. ??1?n!
22解: 令g?x??x?1nf?1??af?0?
(2) f??1??limx?0???x2?22???x2?n2?
f?1?x??f?1?xf?x??x?g(x)
f??x??g?x??xg??x? f??0??g?0??0???1???2? ????n????1??n!?
选B
注:本题用导数定义计算更方便! 3.设f?x??ln?1?x?,则fA .
?5?2n222?limx?0af?x??af?0?x?af??0??a?b
证毕
?x?= ( )
54!?1?x?5 B .
?4!?1?x?
17
专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印
C.
5!?1?x?5 D.
?5!?1?x?5
(2)?f??x??f?x?,
解:f??x???1?x?,
?1?f???x????1??f??x? ?f??0??f??0?得f??0??0
(3)g???4f???x???1?1?x?, f????x????1???2??1?x? f?4??3?2??????f?0??0 选A 2???x????1???2???3??1?x?,
?56.设f?x?在x?1有连续导数,且f??1??2,则lim?x?0f(5)?x????1???2???3???4??1?x?dfcosx? ( ) dx???4!(1?x)?5 选A
4.设y?f?x?由方程e2x?yA. 1 B. -1 C. 2 D .-2
?cos?xy??e?1解:
dfcosx dx??所确定,则曲线y?f?x?在点(0,1)的切线斜率f?(0)= ( )
A .2 B. -2 C .
?f?cosx??sinx??sinx2x????12x
11 D. - 222x?y(2)原式?lim?x?0f?cosx
??解:e?2?y???sin?xy???y?xy???0
??1f??1???1 2e??2?y??0???0?0,y??0??f??0???2
选B
5. 设f?x?为可导偶函数,且g?x??f?cosx?,则g'?选B
二、填空题(每小题4分,共24分)
t??x?esint7.若?, ?ty?ecost??????? ( ) 2??d2y则2? dxdy?e?tcost?e?tsint?2t?e(?1) 解:(1)?ttdxesint?ecostd2ydy?dy?dx?2e?3t???(2) dx2dxdtdtsint?cost18
A. 0 B .1 C .-1 D. 2 解:(1)g??x??f??cosx???cosx??
?f??cosx????sinx?
专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印
8.设f?x??1?lnx,
2则 f?n??0?= n?1则f??e?=
解:f??x??na0x?(n?1)a1xn?2
11lnxxx解:(1)f??x?? ?2221?lnx1?lnx2lnx?112?(2)f??e?? e2e29. 直线l与x轴平行,且与曲线y?x?e相切,则切点坐标是
x??an?1?? f?n??x??n?n?1???a0xn?n
n??n!a0,f??0??n!a0
1?x?1,求dy。
1?x?1三、计算题(每小题8分,共64分) 13 .设y?ln??1?e,ye??0?e?1?0 解:?y曲故有切点坐标?0,?1?
10.y?f?x?由方程x?y?sinx?6y?033xx解: (1)y?ln(1?x?1)?ln?1?x?1
?(2)y??1111?x?121?x1? ?x?0? 确定,则dy解:当x?0时,y?6y?0得y?0
3?1x1?x1?x?121?x
(3)dy?1dx
x1?x3x2?3y2?y??cosx?6y??0
y??0??11,dy?x?0?y??0?dx?dx 661?ex11.设y?ln, x1?e则dy? 解:y?x求y?及y??。 ?4?x2,21x2解:(1) y??arcsin?x 22?x?1????2?14.设y?xarcsin11ln?1?ex??ln?1?ex? 221xexx1?ee y???2x?2xx21?e1?ee?1nn?1??2x24?x2x4?x2?arcsinxx? 224?x??arcsinx 212.设f?x??a0x?a1x
???an?1x?a0,
19
专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印
x???(2)y????arcsin?
2????x?????2??x?1????2?2?14?x2 15.方程sin?xy??lnx?1?1确定y?y?x?,y1dy1?2dy1?tdt解:(1)??12t?t
dxdx21?t2dtdy?2t??1?t2?dydy?dt(2)2? ???dxtdxdxtdt1?t21?x?n?18. 设y?,求y
1?x?1?x?22解:(1)变形,y? ??1?1?x1?x(2)y??2??1??1?x?
?2求
dy?x?0 dx11解:(1)cos?xy??(y?xy?)??y??=0
x?1y(2) 当x?0时,0?lny?1?y?e
y???2??1???2??1?x?
y????2??1???2??1?x???
?4?31(3)cos?0?e??(e?0)?1?y?(0)?0
e1e?1?y?(0) ,y?(0)?e(e?1)
e16.设 y?x?sinx?coxsny???2??1?n!?1?x?n?n?1
19. 设y?y?x? 由方程Fx?y?22??F?x?y??y?0所确
,求y?
定,其中F可导,且
解:(1)lny?lnx?cosxlnsinx
1dyF??2??,F?(4)?1,y?0??2,求?x?0
2dx解:(1)F?x?y11cosx(2)y???sinx?lnsinx?cosx
yxsinxy??x?sinx?cosx?22???2x?2yy??
?F??x?y??1?y???y??0
?1cos2x???sinxlnsinx???xsinx?(2)当x?0时,y?2 ??(3)F??4???4y?(0)??F?(2)?1?y?(0)? ?y?(0)?0
??x?ln1?t217 .设?,确定y?y?x?,
??y?t?arctantd2y求。 dx2
20
4y?(0)?1?1?y?(0)??y?(0)?0 2