一. 傅里叶红外光谱仪 1. 什么是红外光谱图
当一束连续变化的各种波长的红外光照射样品时,其中一部分被吸收,吸收的这部分光能就转变为分子的振动能量和转动能量;另一部分光透过,若将其透过的光用单色器进行色散,就可以得到一谱带。若以波长或波数为横坐标,以百分吸收率或透光度为纵坐标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,也有称红外振-转光谱图 2. 红外光谱仪基本工作原理
用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构。 3. 红外光谱产生的条件
(1) 辐射应具有能满足物质产生振动跃迁所需的能量; (2) 辐射与物质间有相互偶合作用。 4. 红外光谱图的三要素
峰位、峰强和峰形 5. 红外光谱样品的制备方法 1) 固体样品的制备 a. 压片法 b. 糊状法: c. 溶液法
2) 液体样品的制备 a. 液膜法 b. 液体吸收池法
3) 气态样品的制备: 气态样品一般都灌注于气体池内进行测试 4) 特殊样品的制备—薄膜法 a. 熔融法 b. 热压成膜法
c. 溶液制膜法
6. 红外对供试样品的要求
① 试样纯度应大于98%,或者符合商业规格,这样才便于与纯化合物的标准光谱或商业光谱进行对照, 多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析。 ② 试样不应含水(结晶水或游离水)
水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。所用试样应当经过干燥处理。
③ 试样浓度和厚度要适当 使最强吸收透光度在5~20%之间 7. 红外光谱特点
1)红外吸收只有振-转跃迁,能量低;
2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收; 3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定分子基团、分子结构; 4)分析速度快;
5)固、液、气态样均可用,且用量少、不破坏样品; 6)与色谱等联用(GC-FTIR)具有强大的定性功能; 7)可以进行定量分析; 二. 紫外光谱
1. 什么是紫外-可见分光光度法?产生的原因及其特点?
紫外-可见分光光度法也称为紫外-可见吸收光谱法,属于分子吸收光谱,是利用某些物质对200-800 nm光谱区辐射的吸收进行分析测定的一种方法。紫外-可见吸收光谱主要产生于分子价电子(最外层电子)在电子能级间的跃迁。该方法具有灵敏度高,准确度好,使用的仪器设备简便,价格廉价,且易于操作等优点,故广泛应用于无机和有机物质的定性和定量测定。 2. 什么是吸收曲线?及其吸收曲线的特点?
测量某种物质对不同波长单色光的吸收程度,以波长为横坐标, 吸光度为纵坐标作图,可得到一条曲线,称为吸收光谱曲线或光吸收曲线,它反映了物质
对不同波长光的吸收情况。
① 同一种物质对不同波长光的吸光度不同。吸光度最大处对应的波长称为最大吸收波长λmax。
② 不同浓度的同一种物质,其吸收曲线形状相似λmax不变。而对于不同物质,它们的吸收曲线形状和λmax则不同。
③ 吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。 ④ 不同浓度的同一种物质,在某一定波长下吸光度A有差异,在λmax处吸光度A的差异最大。此特性可作作为物质定量分析的依据。
⑤ 在λmax处吸光度随浓度变化的幅度最大,所以测定最灵敏。吸收曲线是定量分析中选择入射光波长的重要依据。 3. 分光光度法定量定性的依据是什么?
定性的依据:同一种吸光物质,浓度不同时,吸收曲线的形状相同,最大吸收波长不变,只是相应的吸光度大小不同。
定量的依据:吸光度的大小与其浓度相关,其定量关系符合朗伯-比耳定律。 4. 什么是朗伯-比耳定律,及其各物理量所代表的意义?
公式为:A?lga
I0?abc I比例常数,称为吸光系数
b 液层厚度,单位cm c
浓度。当浓度c以g·L-1为单位,液层厚度b以cm为单位时,吸光系数的
单位为:L·g-1·cm-1。 三. 质谱分析 1. 什么是质谱法?
一般采用高能离子束(如电子)轰击样品蒸气分子,打掉分子中的价电子,形成带正电荷的离子,然后按核质比(m/z)的大小顺序进行收集和记录,得到质谱图,根据质谱图可实现对样品成分、结构和相对分子质量的测定。 2. 质谱仪的工作原理
质谱仪是利用电磁学原理,使带电的样品离子按质核比进行分离的装置,离子电离后经加速进入磁场中,其动能与加速电压及电荷有关,即