ºÃÎĵµ - רҵÎÄÊéд×÷·¶ÎÄ·þÎñ×ÊÁÏ·ÖÏíÍøÕ¾

´óѧÊý¾Ý½á¹¹ÆÚÄ©¿¼ÊÔÊÔÌâ(Óдð°¸)

ÓÉ ÌìÏ ·ÖÏí ʱ¼ä£º ¼ÓÈëÊÕ²Ø ÎÒҪͶ¸å µãÔÞ

¡°Êý¾Ý½á¹¹¡±ÆÚÄ©¿¼ÊÔÊÔÌâ

Ò»¡¢ µ¥Ñ¡Ìâ(ÿСÌâ2·Ö£¬¹²12·Ö) 1 ?ÔÚÒ»¸öµ¥Á´±íHLÖУ¬ÈôÒªÏò±íÍ·²åÈëÒ»¸öÓÉÖ¸Õë A ? HL = ps p Ò»£¾next = HL B ? p Ò»£¾next = HL; HL= p3 C ? p Ò»£¾next = Hl ; p = HL;

D ? p Ò»£¾next = HL Ò» £¾next;HL Ò»£¾next = p; 2 ? n¸ö¶¥µãµÄÇ¿Á¬Í¨Í¼ÖÐÖÁÉÙº¬ÓÐ ()¡£ A.n ¡ªIÌõÓÐÏò±ß B.n ÌõÓÐÏò±ß C.n(n ¡ª 1) /2ÌõÓÐÏò±ß D.n(n ¡ª 1)ÌõÓÐÏò±ß

pÖ¸ÏòµÄ½áµã£¬ÔòÖ´ÐÐ()¡£

3. ´ÓÒ»¿Ã¶þ²æËÑË÷Ê÷ÖвéÕÒÒ»¸öÔªËØʱ£¬Æäʱ¼ä¸´ÔӶȴóÖÂΪ ()¡£ A.0(1) B.O(n)

C.O(1Ogzn) D.O(n2)

4. ÓÉȨֵ·Ö±ðΪ3£¬8£¬6£¬2, 5µÄÒ¶×Ó½áµãÉú³ÉÒ»¿Ã¹þ·òÂüÊ÷£¬ËüµÄ´øȨ·¾¶³¤¶ÈΪ ()¡£ A ? 24 B ? 48

C. 72 D ? 53

5 ?µ±Ò»¸ö×÷Ϊʵ¼Ê´«µÝµÄ¶ÔÏóÕ¼ÓõĴ洢¿Õ¼ä½Ï´ó²¢¿ÉÄÜÐèÒªÐÞ¸Äʱ£¬Ó¦×îºÃ°ÑËü˵Ã÷Ϊ ()²ÎÊý£¬ÒÔ½ÚÊ¡²ÎÊýÖµµÄ´«

Êäʱ¼äºÍ´æ´¢²ÎÊýµÄ¿Õ¼ä¡£ A.ÕûÐÎ B.ÒýÓÃÐÍ

C.Ö¸ÕëÐÍ D.³£ÖµÒýÓÃÐÍ?

6 ?ÏòÒ»¸ö³¤¶ÈΪnµÄ˳Ðò±íÖвåÈËÒ»¸öÐÂÔªËصÄƽ¾ùʱ¼ä¸´ÔÓ¶ÈΪ ()¡£ A ? O(n) B ? 0(1)

C ? O(n2) D ? O(10g2n)

¶þ¡¢ Ìî¿ÕÌâ(ÿ¿Õ1·Ö£¬¹²28·Ö)

1 ?Êý¾ÝµÄ´æ´¢½á¹¹±»·ÖΪ ¡¢ ¡¢ ºÍ ËÄÖÖ¡£ 2 ?ÔÚ¹ãÒå±íµÄ´æ´¢½á¹¹ÖУ¬µ¥ÔªËؽáµãÓë±íÔªËؽáµãÓÐÒ»¸öÓò¶ÔÓ¦²»Í¬£¬¸÷×Ô·Ö±ðΪһһÓòºÍÒ»Ò»Óò¡£

3 ? ÖÐ׺±í´ïʽ 3Ê®x*(2.4 / 5¡ª6)Ëù¶ÔÓ¦µÄºó׺±í´ïʽΪ ¡£ 4 ?ÔÚÒ»¿Ã¸ß¶ÈΪhµÄ3²æÊ÷ÖУ¬×î¶àº¬ÓÐÒ»Ò»½áµã¡£

5 ?¼Ù¶¨Ò»¿Ã¶þ²æÊ÷µÄ½áµãÊýΪ 18,ÔòËüµÄ×îСÉî¶ÈΪһһ£¬×î´óÉî¶ÈΪ¡ª¡ª 6 ?ÔÚÒ»¿Ã¶þ²æËÑË÷Ê÷ÖУ¬Ã¿¸ö·ÖÖ§½áµãµÄ×ó×ÓÊ÷ÉÏËùÓнáµãµÄÖµÒ»¶¨Ò»Ò»¸Ã½áµãµÄÖµ£¬ ÓÒ×ÓÊ÷ÉÏËùÓнáµãµÄÖµÒ»¶¨Ò»Ò»¸Ã½á µãµÄÖµ¡£ 7 ?µ±ÏòÒ»¸öС¸ù¶Ñ²åÈëÒ»¸ö¾ßÓÐ×îСֵµÄÔªËØʱ£¬¸ÃÔªËØÐèÒªÖð²ã -- µ÷Õû£¬Ö±µ½±»µ÷Õûµ½ --- λÖÃΪֹ¡£

8 ?±íʾͼµÄÈýÖÖ´æ´¢½á¹¹Îª ¡¢ ºÍ ¡£ 9 ?¶ÔÓÃÁÚ½Ó¾ØÕó±íʾµÄ¾ßÓÐ n¸ö¶¥µãºÍeÌõ±ßµÄͼ½øÐÐÈÎÒ»ÖÖ±éÀúʱ£¬Æäʱ¼ä¸´ÔÓ¶ÈΪһһ£¬¶ÔÓÃÁÚ½Ó±í±íʾµÄͼ½øÐÐÈÎÒ» ÖÖ±éÀúʱ£¬Æäʱ¼ä¸´ÔÓ¶ÈΪ ¡£

10 ?´ÓÓÐÐò±í(12£¬18£¬30, 43, 56£¬78£¬82£¬95)ÖÐÒÀ´Î¶þ·Ö²éÕÒ 43ºÍ56ÔªËØʱ£¬Æä²éÕÒ³¤¶È·Ö±ðΪһһºÍ ------------- ?¼Ù¶¨¶Ô³¤¶Èn= 144µÄÏßÐÔ±í½øÐÐË÷Òý˳Ðò²éÕÒ£¬²¢¼Ù¶¨Ã¿¸ö×Ó±íµÄ³¤¶È¾ùΪ £¬Ôò½øÐÐË÷Òý˳Ðò²éÕÒµÄƽ¾ù²éÕÒ³¤ ¶ÈΪһһ£¬Ê±¼ä¸´ÔÓ¶ÈΪ¡ª¡ª

12 ? Ò»¿ÃB¡ªÊ÷ÖеÄËùÓÐÒ¶×Ó½áµã¾ù´¦ÔÚÒ»Ò»ÉÏ¡£

13 ?ÿ´Î´ÓÎÞÐò±íÖÐ˳ÐòÈ¡ŒçÒ»¸öÔªËØ£¬°ÑÕâ²åÈëµ½ÓÐÐò±íÖеÄÊʵ±Î»Ö㬴ËÖÖÅÅÐò·½·¨½Ð×ö¡ª¡ªÅÅÐò£»Ã¿´Î´ÓÎÞÐò±íÖÐÌô

Ñ¡ŒçÒ»¸ö×îС»ò×î´óÔªËØ£¬°ÑËü½»»»µ½ÓÐÐò±íµÄÒ»¶Ë£¬´ËÖÖÅÅÐò·½·¨½Ð×öÒ»Ò»ÅÅÐò¡£

14 ?¿ìËÙÅÅÐòÔÚºõ¾ùÇé¿öϵÄʱ¼ä¸´ÔÓ¶ÈΪһһ£¬×Çé¿öϵÄʱ¼ä¸´ÔÓ¶ÈΪһһ¡£ Èý¡¢ÔËËãÌâ(ÿСÌâ6·Ö£¬¹²24·Ö) 1 ?¼Ù¶¨Ò»¿Ã¶þ²æÊ÷¹ãÒå±í±íʾΪ a(b(c£¬d)£¬c(((£¬8)))£¬·Ö±ðд³ö¶ÔËü½øÐÐÏÈÐò¡¢ÖÐÐò¡¢ºóÐòºÍºóÐò±éÀúµÄ½á¹û¡£ ÏÈÐò£º

ÖÐÐò£» ºóÐò£º 2 ?ÒÑÖªÒ»¸ö´øȨͼµÄ¶¥µã¼¯ VºÍ±ß¼¯G·Ö±ðΪ£º V = {0£¬1£¬2, 3£¬4, 5}£»

E={(0 , 1)8 , (0 , 2)5 , (0 , 3)2 , (1 , 5)6 , (2 , 3)25 , (2 , 4)13 , (3 , 5)9 , (4 , 5)10}, ÔòÇóŒç¸ÃͼµÄ×îСÉú³ÉÊ÷µÄȨ¡£ ×îСÉú³ÉÊ÷µÄȨ£»

11 3

?¼Ù¶¨Ò»×é¼Ç¼µÄÅÅÐòÂëΪ(46 , 79, 56, 38, 40, 84, 50, 42)£¬ÔòÀûÓöÑÅÅÐò·½·¨½¨Á¢µÄ³õʼ¶ÑΪһһ¡£

4 ?ÓÐ7¸ö´øȨ½áµã£¬ÆäȨֵ·Ö±ðΪ 3, 7, 8, 2, 6, 10, 14,ÊÔÒÔËüÃÇΪҶ×Ó½áµãÉú³ÉÒ»¿Ã¹þ·òÂüÊ÷£¬Çó³ö¸ÃÊ÷µÄ´øȨ·¾¶ ³¤¶È¡¢¸ß¶È¡¢Ë«

·ÖÖ§½áµãÊý¡£

´øȨ·¾¶³¤¶È£ºÒ»Ò» ¸ß¶È£ºÒ»Ò» Ë«·ÖÖ§½áµãÊý£ºÒ»Ò»¡£ ËÄ¡¢ÔĶÁËã·¨£¬»Ø´ðÎÊÌâ(ÿСÌâ8·Ö£¬¹²16·Ö) 1 ? VOIdAC(List&L)

{

InitList(L) £»

InsertRear(L;25) £»

lnsertFront(L , 50)

lntaL4] = {5 , 8, 12, 15, 36}; for(inti = 0; i<5; i++)

%2== 0)InsertFront(L , a[i])£»

elselnsertRear(L , a[i])£»

if (a[i] }

¸ÃËã·¨±»µ÷ÓÃÖ´Ðк󣬵õ½µÄÏßÐÔ±í

2 {

InitQueue(Q) £»

inta[5] = {6 , 12, 5,15, 8}; for(int i QInsert(Q QInsert(Q QInsert(Q

LΪ£º

. void AG(Queue&Q)

= 0;i<5; i++)QInsert(Q , a[i])£» , QDelete(Q))£» , 20)£»

, QDelete(Q)Ê® 16)£»

while(!QueueEmpty(Q))cout

¸ÃËã·¨±»µ÷ÓúóµÃµ½µÄÊäŒç½á¹ûΪ£º

Îå¡¢ Ëã·¨Ìî¿Õ£¬ÔÚ»­ÓкáÏߵĵط½ÌîдºÏÊʵÄÄÚÈÝ (ÿСÌâ6·Ö£¬¹²12·Ö) 1 .´ÓһάÊý×éA[n)Öжþ·Ö²éÕҹؼü×ÖΪ KµÄÔªËصĵݹéËã·¨£¬Èô²éÕҳɹ¦Ôò·µ»Ø¶ÔÓ¦ÔªËصÄϱ꣬·ñÔò·µ»ØÒ» IntBinsch(ElemTypeA[] , Intlow , int high , KeyTypeK)

{ if(low< { int mid

1¡£

= high)

= (low+high) /2£»

if(K = = A[mid].key)¡ª¡ª£»

else if (K

else return ¡ª l £» } 2

--- £»

£»

.ÒÑÖª¶þ²æÊ÷ÖеĽáµãÀàÐÍ BinTreeNode¶¨ÒåΪ£º

BTÖÐֵΪxµÄ½á

structBinTreeNode{ElemType data £» BinTreeNode*left , *right}£»

ÆäÖÐdataΪ½áµãÖµÓò£¬leftºÍright·Ö±ðΪָÏò×ó¡¢ÓÒ×ÓÅ®½áµãµÄÖ¸ÕëÓò¡£ÏÂÃ溯ÊýµÄ¹¦ÄÜÊÇ·µ»Ø¶þ²æÊ÷ µãËùÔڵIJãºÅ£¬ÇëÔÚ»®ÓкáÏߵĵط½ÌîдºÏÊÊÄÚÈÝ¡£

Int NodeLevel(BinTreeNode * BT , ElemType X)

{

if(BT : = NULL)return 0 ;

//¿ÕÊ÷µÄ²ãºÅΪ 0

else if(BT Ò» >data = = X)return 1; //¸ù½áµãµÄ²ãºÅΪ //Ïò×ÓÊ÷ÖвéÕÒx½áµã

else{

int cl = NodeLevel(BT Ò» >left , X); if(cl> = 1)return cl+1; int c2 =

if

1

£»

£»

//ÈôÊ÷Öв»´æÔÚX½áµãÔò·µ»Øo else return 0 £»

} }

Áù¡¢ ±àдËã·¨(8·Ö)

°´Ëù¸øº¯ÊýÉùÃ÷±àдһ¸öËã·¨£¬ ´Ó±íÍ·Ö¸ÕëΪHLµÄµ¥Á´±íÖвéÕÒŒç¾ßÓÐ×î´óÖµµÄ½áµã£¬ ÔòÖÐÖ¹ÔËÐС£

EIemType MaxValue(LNOde*HL);

Èôµ¥Á´±íΪ¿Õ

¸Ã×î´óÖµÓɺ¯Êý·µ»Ø,

¡°Êý¾Ý½á¹¹¡±ÆÚÄ©¿¼ÊÔÊÔÌâ´ð°¸

Ò»¡¢ µ¥Ñ¡Ì⣨ÿСÌâ2·Ö£¬¹²12·Ö£© ÆÀ·Ö±ê×¼£»Ñ¡¶ÔÕßµÃ2·Ö£¬·ñÔò²»µÃ·Ö¡£ 1 . B 2 . B 3 . C 4 . D 5 . B ¶þ¡¢ Ìî¿ÕÌ⣨ÿ¿Õ1·Ö£¬¹²28·Ö£©

1 ?˳Ðò½á¹¹ ~2~.Öµ(»ò data) 3 4 5 6 7 8 9

Á´½Ó½á¹¹ Ë÷Òý½á¹¹ ×Ó±íÖ¸Õë(»òsublist)

. 3 x 2 . 4 5 / 6 Ò» * Ê® . (3h¡ª 1) / 2 . 5 18 ?СÓÚ .ÏòÉÏ ?ÁÚ½Ó¾ØÕó . O(n2) 0(e)

´óÓÚ(»ò´óÓÚµÈÓÚ) ¶Ñ¶¥

ÁÚ½Ó±í ±ß¼¯Êý×é(´ÎÐòÎÞÏȺó)

10 . 1 3 11 . 13 O( 12 .ͬһ²ã 13 .²åÈË Ñ¡Ôñ 14 . O(nlog 2n) O(n 2)

)

Èý¡¢ÔËËãÌâ(ÿСÌâ6·Ö£¬¹²24·Ö)

1

.ÏÈÐò£ºa, b, c, d, e, f, e // 2 ·Ö ÖÐÐò£ºc, b, d, a, f, 8, e ºóÐò£ºc, d, b, e, f, e, a

//2 ·Ö

//2 ·Ö // 6·Ö

// 6 ·Ö

// 3·Ö

2 .×îСÉú³ÉÊ÷µÄȨ£º31 3 4

. (84 , 79, 56, 42, 40, 46, 50, 38) ?´øȨ·¾¶³¤¶È£º131 ¸ß¶È£º5

// 2·Ö

// 1·Ö

Ë«·ÖÖ§½áµãÊý£º6

ËÄ¡¢ ÔĶÁËã·¨£¬»Ø´ðÎÊÌâ(ÿСÌâ8·Ö£¬¹²16·Ö)

ÆÀ·Ö±ê×¼£ºÃ¿Ð¡ÌâÕýÈ·µÃ 8·Ö£¬ŒçÏÖÒ»´¦´íÎó¿Û4·Ö£¬Á½´¦¼°ÒÔÉÏ´íÎ󲻵÷֡£

1 2 1

. (36 , 12, 8, 50, 25, 5, 15) . 5 15 8 6 20 28

(ÿСÌâ6·Ö£¬¹²12·Ö)

Îå¡¢ Ëã·¨Ìî¿Õ£¬ÔÚ»­ÓкáÏߵĵط½ÌîдºÏÊʵÄÄÚÈÝ

. feturn mid // 2 ·Ö

returnBinsch(A , low, mid Ò» 1, K) // 2 ·Ö returnBmsch(A , mid+1 , high , K) // 2 ·Ö 2

. NodeLevel(BT ¡ª >right , X)

// 3 ·Ö

// 3 ·Ö

(c2>=1)returnc2 Ê® 1

Áù¡¢ ±àдËã·¨(8·Ö)

ÆÀ·Ö±ê×¼£ºÇë²Î¿¼Óï¾äºóµÄ×¢ÊÍ£¬»ò¸ù¾ÝÇé¿ö×ÃÇé¸ø·Ö¡£ ElemType MaxValue(LNodeO* HL ¡£)

{ if (HL

= =NUlL){ // 2 ·Ö

¡± <

cerr?\ exit(1) £» }

ElemTypemax : HLÒ» >data ; LNOde*p=HI ¡ª >next ; while(P! : NULL){ // 7 ·Ö

// 3 ·Ö // 4 ·Ö

if(max

data)max = p Ò» >data £» p = p Ò» >next £» }

returnmax £» }

// 8 ·Ö

Êý¾Ý½á¹¹¸´Ï°×ÊÁÏ

6 . A

Ò»¡¢Ìî¿ÕÌâ

É¢Áнṹ£¨´ÎÐòÎÞÏȺó£©

1. Êý¾Ý½á¹¹ÊÇÒ»ÃÅÑо¿·ÇÊýÖµ¼ÆËãµÄ³ÌÐòÉè¼ÆÎÊÌâÖмÆËã»úµÄ 2. Êý¾Ý½á¹¹±»ÐÎʽµØ¶¨ÒåΪ£¨D, R £©,ÆäÖÐDÊÇ 3.

²Ù×÷¶ÔÏó ÒÔ¼°ËüÃÇÖ®¼äµÄ ¹Øϵ

¹Øϵ

ºÍÔËËãµÈµÄѧ¿Æ¡£

ÓÐÏÞ¼¯ºÏ¡£

Êý¾ÝÔªËØ µÄÓÐÏÞ¼¯ºÏ,RÊÇDÉ쵀 Âß¼­½á¹¹

Êý¾Ý½á¹¹°üÀ¨Êý¾ÝµÄ ¡¢Êý¾ÝµÄ´æ´¢½á¹¹ ºÍÊý¾ÝµÄ ÔËËãÕâÈý¸ö·½ÃæµÄÄÚÈÝ¡£

4. Êý¾Ý½á¹¹°´Âß¼­½á¹¹¿É·ÖΪÁ½´óÀ࣬ËüÃÇ·Ö±ðÊÇ _ÏßÐԽṹ _ºÍ_·ÇÏßÐԽṹ _¡£

Ò»¶Ô¶à¹Øϵ£¬Í¼ÐνṹÖÐÔªËØÖ®¼ä´æÔÚ

¶à¶Ô¶à¹Øϵ¡£

5. ÏßÐԽṹÖÐÔªËØÖ®¼ä´æÔÚ Ò»¶ÔÒ»¹Øϵ£¬Ê÷ÐνṹÖÐÔªËØÖ®¼ä´æÔÚ 6.

ÔÚÏßÐԽṹÖУ¬µÚÒ»¸ö½áµã _ûÓСªÇ°Çý½áµã£¬ÆäÓàÿ¸ö1¸öÇ°Çý½áµã£»×îºóÒ»¸ö½áµã _ûÓÐ_ ºóÐø½áµã£¬ ÆäÓàÿ

½áµãÓÐÇÒÖ»ÓÐ

¸ö½áµãÓÐÇÒÖ»ÓÐ 1¸öºóÐø½áµã¡£

7. ÔÚÊ÷ÐνṹÖУ¬Ê÷¸ù½áµãûÓÐ ¡ªÇ°Çý¡ª½áµã£¬ÆäÓàÿ¸ö½áµãÓÐÇÒÖ»ÓÐ _1_¸öÇ°Çý½áµã£»Ò¶×Ó½áµãûÓÐ _ºóÐø_½áµã£¬Æä

Óàÿ¸ö½áµãµÄºóÐø½áµãÊý¿ÉÒÔÈÎÒâ¶à¸ö_¡£

8. ÔÚͼÐνṹÖУ¬Ã¿¸ö½áµãµÄÇ°Çý½áµãÊýºÍºóÐø½áµãÊý¿ÉÒÔ 9.

_ÈÎÒâ¶à¸ö _¡£

Êý¾ÝµÄ´æ´¢½á¹¹¿ÉÓÃËÄÖÖ»ù±¾µÄ´æ´¢·½·¨±íʾ£¬ËüÃÇ·Ö±ðÊÇ

˳Ðò¡¢Á´

ʽ¡¢Ë÷ÒýºÍÉ¢ÁС£

10. Êý¾ÝµÄÔËËã×î³£ÓõÄÓÐ 5ÖÖ£¬ËüÃÇ·Ö±ðÊÇ ²åÈ롢ɾ³ý¡¢Ð޸ġ¢ ²éÕÒ¡¢ÅÅÐò¡£ 11. Ò»¸öËã·¨µÄЧÂÊ¿É·ÖΪ _ʱ¼ä _____ ЧÂÊºÍ _¿Õ¼ä_ЧÂÊ¡£

12. ÔÚ˳Ðò±íÖвåÈë»òɾ³ýÒ»¸öÔªËØ£¬ ÐèҪƽ¾ùÒƶ¯_±íÖÐÒ»°ëÔªËØ£¬¾ßÌåÒƶ¯µÄÔªËظöÊýÓë _±í³¤ºÍ¸ÃÔªËØÔÚ±íÖеÄλÖà _Óйء£ 13. ÏßÐÔ±íÖнáµãµÄ¼¯ºÏÊÇ¡ªÓÐÏÞ_µÄ£¬½áµã¼äµÄ¹ØϵÊÇ _Ò»¶ÔÒ»_µÄ¡£

14. ÏòÒ»¸ö³¤¶ÈΪnµÄÏòÁ¿µÄµÚi¸öÔªËØ£¨1 < i < n+1£©Ö®Ç°²åÈëÒ»¸öÔªËØʱ£¬ÐèÏòºóÒƶ¯ 15. ÏòÒ»¸ö³¤¶ÈΪnµÄÏòÁ¿ÖÐɾ³ýµÚi¸öÔªËØ£¨1 < i < n£©Ê±£¬ÐèÏòÇ°Òƶ¯ n-i ¸öÔªËØ¡£ 16. ÔÚ˳Ðò±íÖзÃÎÊÈÎÒâÒ»½áµãµÄʱ¼ä¸´ÔӶȾùΪ 17.

0£¨1£© _£¬Òò´Ë£¬Ë³Ðò±íÒ²³ÆΪ_Ëæ»ú´æÈ¡_µÄÊý¾Ý½á¹¹¡£

_n-i+1 ¡ª¸öÔªËØ¡£

˳Ðò±íÖÐÂß¼­ÉÏÏàÁÚµÄÔªËصÄÎïÀíλÖà ±Ø¶¨ÏàÁÚ¡£µ¥Á´±íÖÐÂß¼­ÉÏÏàÁÚµÄÔª

ËصÄÎïÀíλÖà ²»Ò»¶¨ÏàÁÚ¡£

_ÆäÖ±½ÓÇ°Çý½áµãµÄÁ´ÓòµÄÖµ _ָʾ¡£

18?ÔÚµ¥Á´±íÖУ¬³ýÁËÊ×Ôª½áµãÍ⣬ÈÎÒ»½áµãµÄ´æ´¢Î»ÖÃÓÉ 19. 0£¨n£©¡£

ÔÚn¸ö½áµãµÄµ¥Á´±íÖÐҪɾ³ýÒÑÖª½áµã *p£¬ÐèÕÒµ½ËüµÄÇ°Çý½áµãµÄµØÖ·£¬Æäʱ¼ä¸´ÔÓ¶ÈΪ

20. ÏòÁ¿¡¢Õ»ºÍ¶ÓÁж¼ÊÇ¡ªÏßÐÔ _½á¹¹£¬¿ÉÒÔÔÚÏòÁ¿µÄ _ÈκΠ__________ λÖòåÈëºÍɾ³ýÔªËØ£»¶ÔÓÚÕ»Ö»ÄÜÔÚ _Õ»¶¥_²åÈëºÍɾ³ý

ÔªËØ£»¶ÔÓÚ¶ÓÁÐÖ»ÄÜÔÚ _¶Óβ _______ ²åÈëºÍ_¶ÓÊ×_ɾ³ýÔªËØ¡£

21. Õ»ÊÇÒ»ÖÖÌØÊâµÄÏßÐÔ±í£¬ÔÊÐí²åÈëºÍɾ³ýÔËËãµÄÒ»¶Ë³ÆΪ

_Õ»¶¥_¡£²»ÔÊÐí²åÈëºÍɾ³ýÔËËãµÄÒ»¶Ë³ÆΪ _____________ Õ»µ× ____ ¡£

22. ____ ¶ÓÁÐ_ÊDZ»ÏÞ¶¨ÎªÖ»ÄÜÔÚ±íµÄÒ»¶Ë½øÐвåÈëÔËË㣬ÔÚ±íµÄÁíÒ»¶Ë½øÐÐɾ³ýÔËËãµÄÏßÐÔ±í¡£

23. _²»°üº¬ÈκÎ×Ö·û£¨³¤¶ÈΪ0£©µÄ´®_³ÆΪ¿Õ´®£» _ ÓÉÒ»¸ö»ò¶à¸ö¿Õ¸ñ £¨½öÓÉ¿Õ¸ñ·û£©×é³ÉµÄ´® ______________ ³ÆΪ¿Õ°×´®¡£ 24. ×Ó´®µÄ¶¨Î»ÔËËã³ÆΪ´®µÄģʽƥÅ䣻

±»Æ¥ÅäµÄÖ÷´® ³ÆΪĿ±ê´®£¬ ×Ó´® ³ÆΪģʽ¡£

25. ¼ÙÉèÓжþάÊý×é Ax8£¬Ã¿¸öÔªËØÓÃÏàÁÚµÄ6¸ö×Ö½Ú´æ´¢£¬´æ´¢Æ÷°´×Ö½Ú±àÖ·¡£ÒÑÖª AµÄÆðʼ´æ´¢Î»Ö㨻ùµØÖ·£©Îª 1000£¬Ôò

Êý×éAµÄÌå»ý£¨´æ´¢Á¿£©Îª 288 B ;ĩβԪËØúQµÄµÚÒ»¸ö×Ö½ÚµØַΪ 1282 ;Èô°´Ðд洢ʱ£¬ÔªËØ µÄµÚÒ»¸ö×Ö

¡£

½ÚµØַΪ£¨8+4£© X 6+1000=1072 ;Èô°´Áд洢ʱ£¬ÔªËØ A47µÄµÚÒ»¸ö×Ö½ÚµØַΪ £¨6 X 7+ 4£© X 6 + 1000£©= 1276

26. 27.

ÓÉ3¸ö½áµãËù¹¹³ÉµÄ¶þ²æÊ÷ÓÐ _5_ÖÖÐÎ̬¡£

Ò»¿ÃÉî¶ÈΪ6µÄÂú¶þ²æÊ÷ÓÐ_m+n2=0+ n2= n¡ã-1=31 _¸ö·ÖÖ§½áµãºÍ_26-1 =32_¸öÒ¶×Ó¡£

×¢£ºÂú¶þ²æÊ÷ûÓжÈΪ1µÄ½áµã£¬ËùÒÔ·ÖÖ§½áµãÊý¾ÍÊǶþ¶È½áµãÊý¡£

28.

Ò»¿Ã¾ßÓÐ2 5 7¸ö½áµãµÄÍêÈ«¶þ²æÊ÷£¬ËüµÄÉî¶ÈΪ _9 ¡£

+1=9

£¨×¢£ºÓÃ[log 2£¨n£© +1= |l_8.xx

29. ÉèÒ»¿ÃÍêÈ«¶þ²æÊ÷ÓÐ 700¸ö½áµã£¬Ôò¹²ÓÐ_ 350 _¸öÒ¶×Ó½áµã¡£

´ð£º×î¿ì·½·¨£ºÓÃÒ¶×ÓÊý=[n/2] = 350

30. _________________________ ÉèÒ»¿ÃÍêÈ«¶þ²æÊ÷¾ßÓÐ 1000¸ö½áµã£¬Ôò´ËÍêÈ«¶þ²æÊ÷ÓÐ _500_¸öÒ¶×Ó½áµã£¬ÓÐ _499_¸ö¶ÈΪ2µÄ½áµã£¬ÓÐ _ 1_ ¸ö½á µãÖ»ÓзǿÕ×ó×ÓÊ÷£¬ÓÐ_0 ¸ö½áµãÖ»ÓзǿÕÓÒ×ÓÊ÷¡£

´ð£º×î¿ì·½·¨£ºÓÃÒ¶×ÓÊý=[n/2] = 500£¬n2=n¡£-ÈÊ499¡£ÁíÍ⣬×îºóÒ»½áµãΪ 2iÊôÓÚ×óÒ¶×Ó£¬ÓÒÒ¶×ÓÊǿյģ¬ËùÒÔÓÐ 1¸ö·Ç¿Õ ×ó×ÓÊ÷¡£ÍêÈ«¶þ²æÊ÷µÄÌصã¾ö¶¨²»¿ÉÄÜÓÐ×ó¿ÕÓÒ²»¿ÕµÄÇé¿ö£¬ËùÒÔ·Ç¿ÕÓÒ×ÓÊ÷Êý=

31.

0.

ÔÚÊý¾ÝµÄ´æ·ÅÎÞ¹æÂɶøÑÔµÄÏßÐÔ±íÖнøÐмìË÷µÄ×î¼Ñ·½·¨ÊÇ _˳Ðò²é

ÕÒ£¨ÏßÐÔ²éÕÒ£© _¡£

k,Óöþ·Ö·¨¼ìË÷±íÖÐÓë kÏàµÈµÄÔªËØ£¬ÔÚ²éÕÒ²»³É

_7_¡£

32. ÏßÐÔÓÐÐò±í£¨a, a?, a3£¬¡­£¬´£6£©ÊÇ´ÓСµ½´óÅÅÁеģ¬¶ÔÒ»¸ö¸ø¶¨µÄÖµ

¹¦µÄÇé¿öÏ£¬×î¶àÐèÒª¼ìË÷ _8 _´Î¡£ÉèÓÐ100¸ö½áµã£¬Óöþ·Ö·¨²éÕÒʱ£¬×î´ó±È½Ï´ÎÊýÊÇ

33. ¼ÙÉèÔÚÓÐÐòÏßÐÔ±í a[20]ÉϽøÐÐÕÛ°ë²éÕÒ£¬Ôò±È½ÏÒ»´Î²éÕҳɹ¦µÄ½áµãÊýΪ 1;±È½ÏÁ½´Î²éÕҳɹ¦µÄ½áµãÊýΪ _ 2_ ;±È½Ï

ËĴβéÕҳɹ¦µÄ½áµãÊýΪ _ 8 _ ;ƽ¾ù²éÕÒ³¤¶ÈΪ 3.7_¡£

½â£ºÏÔÈ»£¬Æ½¾ù²éÕÒ³¤¶È= 0 £¨log 2n£© <5´Î£¨25£©¡£µ«¾ßÌåÊǶàÉٴΣ¬Ôò²»Ó¦µ±°´ÕÕ¹«Ê½ ASL =\+1 Iog2(n +1)À´¼ÆËã(¼´(21 X log 221) /20 =4.6´Î²¢²»ÕýÈ·£¡)¡£ÒòΪÕâÊÇÔÚ¼ÙÉè n = 2-1µÄÇé¿öÏÂÍƵ¼³öÀ´µÄ¹«Ê½¡£ n

Ó¦µ±ÓÃÇî¾Ù·¨ÂÞÁУº

È«²¿ÔªËصIJéÕÒ´ÎÊýΪ=(1 + 2X 2+ 4X 3+ 8X 4 + 5X 5 )= 74; ASL = 74/20=3.7

34. ÕÛ°ë²éÕÒÓÐÐò±í(4, 20 ____ ±È½Ï´óС¡£

35. ÔÚ¸÷ÖÖ²éÕÒ·½·¨ÖУ¬Æ½¾ù²éÕÒ³¤¶ÈÓë½áµã¸öÊý

nÎ޹صIJéÕÒ·½·¨ÊÇ

6, 12, 20, 28 , 38,

50, 70, 88, 100),Èô²éÕÒ±íÖÐÔªËØ

!!!

20£¬Ëü½«ÒÀ´ÎÓë±íÖÐÔªËØ

28 , 6, 12,

É¢ÁвéÕÒ _¡£

36. É¢Áз¨´æ´¢µÄ»ù±¾Ë¼ÏëÊÇÓÉ _¹Ø¼ü×ÖµÄÖµ ________ ¾ö¶¨Êý¾ÝµÄ´æ´¢µØÖ·¡£

¶þ¡¢ÅжÏÕýÎó(ÔÚÕýÈ·µÄ˵·¨ºóÃæ´ò¹´£¬·´Ö®´ò²æ) (X ) 1.Á´±íµÄÿ¸ö½áµãÖж¼Ç¡ºÃ°üº¬Ò»¸öÖ¸Õë¡£

´ð£º´íÎó¡£Á´±íÖеĽáµã¿Éº¬¶à¸öÖ¸ÕëÓò£¬·ÖÁíU´æ·Å¶à¸öÖ¸Õë¡£ÀýÈ磬˫ÏòÁ´±íÖеĽáµã¿ÉÒÔº¬ÓÐÁ½¸öÖ¸ÕëÓò£¬·ÖÁíU´æ·ÅÖ¸ÏòÆä Ö±½ÓÇ°Ç÷ºÍÖ±½Óºó¼Ì½áµãµÄÖ¸Õë¡£

(X ) 2.Á´±íµÄÎïÀí´æ´¢½á¹¹¾ßÓÐͬÁ´±íÒ»ÑùµÄ˳Ðò¡£

´í£¬Á´±íµÄ´æ´¢½á¹¹ÌصãÊÇÎÞÐò£¬

¶øÁ´±íµÄʾÒâͼÓÐÐò¡£

´í£¬Á´±íµÄ½á

(X ) 3.Á´±íµÄɾ³ýËã·¨ºÜ¼òµ¥£¬ÒòΪµ±É¾³ýÁ´ÖÐij¸ö½áµãºó£¬¼ÆËã»ú»á×Ô¶¯µØ½«ºóÐøµÄ¸÷¸öµ¥ÔªÏòÇ°Òƶ¯¡£ µã²»»áÒƶ¯£¬Ö»ÊÇÖ¸ÕëÄÚÈݸı䡣

(X ) 4.ÏßÐÔ±íµÄÿ¸ö½áµãÖ»ÄÜÊÇÒ»¸ö¼òµ¥ÀàÐÍ£¬¶øÁ´±íµÄÿ¸ö½áµã¿ÉÒÔÊÇÒ»¸ö¸´ÔÓÀàÐÍ¡£ ´í£¬»ìÏýÁËÂß¼­½á¹¹ÓëÎïÀí½á¹¹£¬Á´±íÒ²ÊÇÏßÐÔ±í£¡ÇÒ¼´Ê¹ÊÇ˳Ðò±í£¬Ò²ÄÜ´æ·Å¼Ç¼ÐÍÊý¾Ý¡£ (X ) 5.˳Ðò±í½á¹¹ÊÊÒËÓÚ½øÐÐ˳Ðò´æÈ¡£¬¶øÁ´±íÊÊÒËÓÚ½øÐÐËæ»ú´æÈ¡¡£ ´í£¬ÕýºÃ˵·´ÁË¡£Ë³Ðò±í²ÅÊʺÏËæ»ú´æÈ¡£¬Á´±íÇ¡Ç¡ÊÊÓÚ¡°Ë³ÌÙÃþ¹Ï¡± (X ) 6.˳Ðò´æ´¢·½Ê½µÄÓŵãÊÇ´æ´¢Ãܶȴó£¬ÇÒ²åÈ롢ɾ³ýÔËËãЧÂʸߡ£

´í£¬Ç°Ò»°ëÕýÈ·£¬µ«ºóÒ»°ë˵·¨´íÎó£¬ÄÇÊÇÁ´Ê½´æ´¢µÄÓŵ㡣˳Ðò´æ´¢·½Ê½²åÈ롢ɾ³ýÔËËãЧÂʽϵͣ¬ÔÚ±í³¤Îª ²åÈëºÍɾ³ýÒ»¸öÊý¾ÝÔªËØ£¬Æ½¾ùÐèÒƶ¯±í³¤Ò»°ë¸öÊýµÄÊý¾ÝÔªËØ¡£ (X ) 7.ÏßÐÔ±íÔÚÎïÀí´æ´¢¿Õ¼äÖÐÒ²Ò»¶¨ÊÇÁ¬ÐøµÄ¡£

´í£¬ÏßÐÔ±íÓÐÁ½ÖÖ´æ´¢·½Ê½£¬Ë³Ðò´æ´¢ºÍÁ´Ê½´æ´¢¡£ºóÕß²»ÒªÇóÁ¬Ðø´æ·Å¡£

(X ) 8.ÏßÐÔ±íÔÚ˳Ðò´æ´¢Ê±£¬Âß¼­ÉÏÏàÁÚµÄÔªËØδ±ØÔÚ´æ´¢µÄÎïÀíλÖôÎÐòÉÏÏàÁÚ¡£

´íÎó¡£ÏßÐÔ±íÓÐÁ½ÖÖ´æ´¢·½Ê½£¬ÔÚ˳Ðò´æ´¢Ê±£¬Âß¼­ÉÏÏàÁÚµÄÔªËØÔÚ´æ´¢µÄÎïÀíλÖôÎÐòÉÏÒ²ÏàÁÚ¡£ (X ) 9.˳Ðò´æ´¢·½Ê½Ö»ÄÜÓÃÓÚ´æ´¢ÏßÐԽṹ¡£

nµÄ˳Ðò±íÖУ¬

´íÎó¡£Ë³Ðò´æ´¢·½Ê½²»½öÄÜÓÃÓÚ´æ´¢ÏßÐԽṹ£¬»¹¿ÉÒÔÓÃÀ´´æ·Å·ÇÏßÐԽṹ£¬ÀýÈçÍêÈ«¶þ²æÊ÷ÊÇÊôÓÚ·ÇÏßÐԽṹ£¬µ«Æä×î¼Ñ´æ´¢ ·½Ê½ÊÇ˳Ðò´æ´¢·½Ê½¡£(ºóÒ»½Ú½éÉÜ)

(X ) 10.ÏßÐÔ±íµÄÂß¼­Ë³ÐòÓë´æ´¢Ë³Ðò×ÜÊÇÒ»Öµġ£ ´í£¬ÀíÓÉͬ7¡£Á´Ê½´æ´¢¾ÍÎÞÐèÒ»Ö¡£

(X ) 11.ÏßÐÔ±íµÄÿ¸ö½áµãÖ»ÄÜÊÇÒ»¸ö¼òµ¥ÀàÐÍ£¬¶øÁ´±íµÄÿ¸ö½áµã¿ÉÒÔÊÇÒ»¸ö¸´ÔÓÀàÐÍ¡£ ´í£¬ÏßÐÔ±íÊÇÂß¼­½á¹¹¸ÅÄ¿ÉÒÔ˳Ðò´æ´¢»òÁ´Ê½´æ´¢£¬ÓëÔªËØÊý¾ÝÀàÐÍÎ޹ء£ (X ) 12.ÔÚ±í½á¹¹ÖÐ×î³£ÓõÄÊÇÏßÐÔ±í£¬Õ»ºÍ¶ÓÁв»Ì«³£Óᣠ´í£¬²»Ò»¶¨°É£¿µ÷ÓÃ×Ó³ÌÐò»òº¯Êý³£Óã¬

CPUÖÐÒ²ÓöÓÁС£

(V ) 13.Õ»ÊÇÒ»ÖÖ¶ÔËùÓвåÈ롢ɾ³ý²Ù×÷ÏÞÓÚÔÚ±íµÄÒ»¶Ë½øÐеÄÏßÐÔ±í£¬ÊÇÒ»ÖÖºó½øÏÈŒçÐͽṹ¡£ (V ) 14.¶ÔÓÚ²»Í¬µÄʹÓÃÕߣ¬Ò»¸ö±í½á¹¹¼È¿ÉÒÔÊÇÕ»£¬Ò²¿ÉÒÔÊǶÓÁУ¬Ò²¿ÉÒÔÊÇÏßÐÔ±í¡£ ÕýÈ·£¬¶¼ÊÇÏßÐÔÂß¼­½á¹¹£¬Õ»ºÍ¶ÓÁÐÆäʵÊÇÌØÊâµÄÏßÐÔ±í£¬¶ÔÔËËãµÄ¶¨ÒåÂÔÓв»Í¬¶øÒÑ¡£ (X ) 15.Õ»ºÍÁ´±íÊÇÁ½ÖÖ²»Í¬µÄÊý¾Ý½á¹¹¡£

´óѧÊý¾Ý½á¹¹ÆÚÄ©¿¼ÊÔÊÔÌâ(Óдð°¸)

¡°Êý¾Ý½á¹¹¡±ÆÚÄ©¿¼ÊÔÊÔÌâÒ»¡¢µ¥Ñ¡Ìâ(ÿСÌâ2·Ö£¬¹²12·Ö)1?ÔÚÒ»¸öµ¥Á´±íHLÖУ¬ÈôÒªÏò±íÍ·²åÈëÒ»¸öÓÉÖ¸ÕëA?HL=pspÒ»£¾next=HLB?pÒ»£¾next=HL;HL=p3C?pÒ»£¾next=Hl;p=HL;D?pÒ»£¾next=HLÒ»£¾next;HLÒ»£¾next=
ÍƼö¶È£º
µã»÷ÏÂÔØÎĵµÎĵµÎªdoc¸ñʽ
77qtx5poqt97tl37kuug5o77k30e1i00qp6
ÁìÈ¡¸£Àû

΢ÐÅɨÂëÁìÈ¡¸£Àû

΢ÐÅɨÂë·ÖÏí