《工程流体力学(杜广生)》习题答案
1-1
d???m0.453?V500?10?6第一章
3
?906kg/m
kg/m3
906?0.9061000
1-2
???0?273p273?1.34??1?0.544273?t101325273?4001-3 ? V1-4
2V1dV1V2?V1?dtVt2?t1V1
m3/h
1/
??V(t2?t1)V1?V1?550?10?6?(80?20)?60?60?61.981dV1V2?V11995?10?6?1?10?3?9????????5?10dpVp2?p1V12?106?1061?10?3Pa
1-5 ?????4.28?10?678?2.9?10 Pa·s
21.3?10??1.3?10m/s 1-6 ????999.4?7?4?3?61-7 (1) (2)
??u??dn60?3.14?0.1?5000?26.1760 m/s 1/s
duu?026.175???5.23?10dy?0.005?10?2dduddud??A???dL2dy2dy2M?F
Pa·s
2Mdy2?3.51???5.33?10?3225?dLdu3.14?0.1?0.085.23?10(3)
???du?5.33?10?3?5.23?105?2.79?103dyPa
页脚内容 《工程流体力学(杜广生)》习题答案 ?2?y 1-8 (1)???dudy?2?y?2??1?2? (2)???dudy1-9 (1)
F?2?Audu?2?bL0dyh
0udu????? (2) 当y?h时,dyh2du?0 (3)当y?3h时,u?u 所以???dy201-10
F?F1?F2?(?1??2)Adudu0.3?3?1A?3?1?1??29dydy0.03N
Pa·s ?r?0dr2??r1-11 dM?dF?r??dudA?r??2?rr??dr dy?sin??sin??1?0.967 Pa·s
?2?2?1?1.93332??r32??Htg?32???(Htg?)4???H4tg3?M??dM???dr????rdr?00?sin??sin?0?sin?42?cos?Htg?Htg?1-12
u??dn60?3.14?0.25?200?2.6260m/s
N Pa·s N
A??dL?3.14?0.25?0.50?0.3925F??Am2
du2.62?03?0.82?0.3925??4.22?10dy0.2?10?3P?Fu?4.22?103?2.62?11.05kW m2
1-13
F??A?????0.9144?10?4?0.92?1000?0.0841A??dL?3.14?0.1524?0.3048?0.1459du6?0?0.0841?0.1459??736.2152.6?152.4dy?10?32页脚内容 《工程流体力学(杜广生)》习题答案 P?Fv?736.2?6?4.42kW
du?r?02???3r???2?rdrr?rdrdy??1-14
AdM?dF?r??dAd20
M??dM??2???????d4rdr?32?3 m2
N m
2
1-15 1-16
A??dL?3.14?0.25?1?0.785F??Adu0.3?0?18.08?10?6?0.785??4.258?10?3dy0.001A??Db?3.14?0.2?0.3?0.1884duu?0u2N?Fu??Au??Au??Ady?? m/s
u?N?50.7?0.08?10?2??0.9374?A0.245?0.188460u60?0.9374??89.56?90?D3.14?0.2?4n?r/min
1-17 ?????0.893?10?918?0.082 Pa·s
0.3?0?0.082?1.8?0.1??14.75N F??Adudy0.3?10?31-18 由1-14的结果得
???d4??2nd44400?10?4?3.142?90?0.464M????79.232?32?30?960?0.23?10?3 N·m
F120??120Adudy1-19
F0??0Adudy
F0?F120?0??1200.015?0.002???86.7e?00.0151-20
hH2O?1.98?1.98?0.0728?0.324r??0.324?0.5?10?3?29.3?3?gr1000?9.8?0.5?10页脚内容 mm
《工程流体力学(杜广生)》习题答案 1-21
1.53?1.53?0.513hHg??(?0.216r)??(?0.216?0.5?10?3)?11.7?3?gr1000?9.8?0.5?10m
m
?4?1-22 由h??gR??22??36R2?? 2
得
???3?R2??2???g??h?2?6R2??4???R?1?sin?? 其中 ??cos?则 ???gR2?2h1?2sin????2?Rcos???31?sin???
1-23 根据牛顿内摩擦定律 ????dV dr由于流速u随半径r的增加而减小,即
dudr是负值,为了使?为正值,上式在等号
2右端取负号
d?D[( 根据已知条件 ????dr4?4在管壁处r?D 则?2?当r?D时 421?r2)]??2r
??D22??D4
??D22??D4
?D4管壁处的阻力 1-24
G?F?maF??1A??DL?1??D2L4
90??9.18(kg) 其中m?Gg9.8页脚内容 《工程流体力学(杜广生)》习题答案 则 90?F?9.18?(?0.61)
由F??Adu dyF?95.60N
其中A??DL?3.14?0.15228?0.1219?0.0583m2 duu?06.1?0???248979.6 1/s dy?0.0245?10?3则??F95.6??0.006586?6.586?10?3du0.0583?248979.6Ady Pa·s
第二章
2-1
pA?pa??Hggh2??H2Ogh1?105?13600?9.8?0.9?1000?9.8?0.8?212.112k
Pa
2-2 p??p??(0??g?h)?1594?9.8?0.9?14059.08Pa p?p?p?101325?14059.08?87265.92Pa
2-3 p??gh??gh 且 h?0.25?0.15?0.1m (a) p?(???)gh??gh?1000?9.8?0.1?980Pa p?p?p?101325?980?102305Pa
(b) p?(???)gh??gh?0.83?1000?9.8?0.1?813.4Pa p?p?p?101325?813.4?102138.4Pa
(c) p?(???)gh?(13600?1000)?9.8?0.1?12348Pa p?p?p?101325?12348?113673Pa
2-4 设A点到下水银面的距离为h1,B
veaveABeBABaeeBABaeeBAae页脚内容 《工程流体力学(杜广生)》习题答案 点到上水银面的距离为h2
p??gh??gh??gh?p
AH2O1HgH2O2B5.48?h1?h?h2?3.04h?pA?pB?2.44?H2O(?Hg??H2O)g
g(2.744?1.372)?10?2.44?1000?9.8??1.305m (13600?1000)?9.8h1?h2?h?2.445 即
2-5
2-6
?s?1.25?0.0027ts?1.25?0.0027?300?0.44kg/m3 Pa
Pa
ps??sgH?pa??agH
pa?ps?(?a??s)gH?(1.29?0.44)?9.8?20?166.6pe???Hgg?0.12??H2Og?3??13600?9.8?0.12?1000?9.8?3?13406.42-7 p??gh?p??gh??gh (1)p?p?1000dgh?1000dgh?1000dgh
A11B3322AB332211?68.95?1000?1000?0.83?9.8?0.12?1000?13.6?9.8?0.08?1000?0.83?9.8?0.16?79.287kPa
Pa
123(2)
pB?pA?1000d1gh1?1000d2gh2?1000d3gh3?137.9?1000?1000?0.83?9.8?0.16?1000?13.6?9.8?0.08?1000?0.83?9.8?0.12?127562.96kPa
2-8 设h?40cm h?2m hp??gh??gh??gh?p??g(h?h) p?p??g(h?h)??gh??gh??gh
pBe?pB?pa?127562.96?96000?31.563AA2A1Hg1BB23ABB23A2A1Hg1?3m
?200000?1254.3?9.8?(2?3)?856.7?9.8?2?856.7?9.8?0.4?13600?9.8?0.4
?105.377kPa
页脚内容 《工程流体力学(杜广生)》习题答案 2-9 (1)p?p??gLsin??1000?9.8?0.2?sin45p?p1385.93??35cm (2)L??gsin?800?9.8?sin30AB??1385.93Pa
AB?2-10
?h2?p??Hgg?h1?13600?9.8?0.05?6664Pa
p?HOg2?6664?0.681000?9.8m
2-11
pa??Hggh2?p0??H2Ogh1pa??Hggh3?p0??H2Ogh4
整理得
h4?1?HO2(?H2Oh1??Hgh2??Hgh3)
a?1(1000?0.5?13600?0.2?13600?0.3)1000 ?1.86m 2-12 p?p??g(h?h)??
Hg43Hgg(h2?h1)??H2Og(H?h1)?105?13600?9.8?(2.3?1.0)?13600?9.8?(2.5?1.5)?1000?9.8?(3.5?1.5)?386944Pa
Hg2-13 p??g(0.84?h)??gh
?0.841.372?10?0.75?1000?9.8?0.84 h?p(???g??113.85cm ??)g(13600?0.75?1000)?9.8A5AHg2-14 p?d?1000g(3.2?2.74)??d?1000g(3.43?3.0)
1.60?1000?9.8?0.46?0.862 d??10845??1000?9.8?0.432-15 p??gz?p??g(z?0.59)??g?0.59 整理
ABBAH2OBH2OHgpA?pB??Hgg?0.59??H2O:
g?0.59?(13600?1000)?9.8?0.59?72.853kPa
页脚内容 《工程流体力学(杜广生)》习题答案 2-16 设差压计中的工作液体密度为??
p??g(h?h)?p??g(h?h)???g(h?h) ?p?p?p??g(h?h?h?h)???g(h?h)
?1.5?1000?9.8?(3.81?0.10?3.48?3.00)?0.75?1000?9.8?(3.81?3.48)
A14B2312AB142312?45055.5Pa
m
?p45055.5??3.065?g1.5?1000?9.82-17
?161802pB?pA?1000d3gh3?1000d2gh2?1000d1gh1?274600?1000?13.6?9.8?0.6?1000?1?9.8?1.52?1000?0.75?9.8?2.44Pa 2-18
pA??g?0.53??Hgg?0.34?9.8?(1.25?1000?0.53?13600?0.34)??38.82kP
a
2-19 (1) F??ghA?1000?9.8?1?100?10?98N
(2) G??gV?1000?9.8?(0.01?0.01?10?0.99)?1.95N 2-20 证明:如书中证明过程。 2-21 设油的密度为?
3.8F??ghA?0.83?1000?9.8??3.8?2?117454.96N 2?4?4ABcABABFBC?FBC1?FBC2??ghABABC??H2OghcBCAAB?830?9.8?3.8?2.4?2?1000?9.8??148364.16?564482.4?2.4?22
?204812.16N
N
页脚内容 FABC?FAB?FBC?322267.12《工程流体力学(杜广生)》习题答案 对A点取矩
FABC?yD?FAB?yD1?FBC1?yD2?FBC2?yD3
22.42117454.96?(3.8?)?148364.16?(3.8?)?56448?(3.8?2.4?)323yD?322267.12 ?4.171m(距A点)
2-22 设梯形坝矩形部分重量为G,三角形部分重量为G
12(1)G?G?G12?2000?9.8?30?(4x?x?4)?3528x2(kN)
3F??ghcA?9800??3?30?13232(kN)
?G?10F?10 ?x?1323000?3.75m 3528000(2)F?1m ?3?1323 kN·3<
32312G1?x?G2?x?2000?9.8?30?3.752?(4???4?)?60637.523223
kN·m
稳固
2-23 F??ghA?9800?(h?02.9sin60)?0.9?1.2?10584h?4124.7
?c总压力F的作用点到A点的距离
0.9Icxy???0.45?2ycA1.2?0.930.81?0.45?h0.912?(1.1547h?0.45)12?(?)?1.2?0.92sin60?
由G?0.3?F?y
页脚内容 《工程流体力学(杜广生)》习题答案 整理得
65995.262h2?83602.968h?22558.014?0 (提示
?b?b2?4acx?2a)
FF2y1?y2?Fh223解得:h?0.877m 2-24 图示法:
y1?y2?4 整理得
322
A1?l1?1????A?h?22又
l1 所以
l1?
y1?2l1?2?1.4143于是 2-25
m
y2?4?y1?2.586m
1.83F??ghcA?9800?(?1.22)?0.915?1.83?35034.522N
1?0.915?1.833I1.8312yD?yc?cx?(?1.22)??2.2661.83ycA2(?1.22)?0.915?1.832m(距液
面) 2-26
21F??ghcA?9800?(?1.83?sin45??0.91)??1.22?1.83?19392.5532N
m
1?1.22?1.833I0.91236yD?yc?cx?(??1.83)??2.58?0.9121ycA3sin45(??1.83)??1.22?1.83?32sin45(距液面)
0.91或2.58?sin45??1.293m(距C点)
页脚内容 《工程流体力学(杜广生)》习题答案 2-27 第一种计算方法:
设水面高为H?5.486m,油面高为h?1.829m;水的密度为?,油的密度为?
左侧闸门以下水的压力:
hF??ghA??g?h?b?19981.5N 21211c11右侧油的压力:F2h??2ghc2A??2g?h?b?14986.12N
左侧闸门上方折算液面相对压强:p??g(H?h)?p?20938.6(Pa) 则:F?pA?46683.7N
由力矩平衡方程(对A点取矩):
01e00F0h22?F1h?F2h?FBh233 解得:FB?26672(N)
第二种计算方法是将左侧液面上气体的计示压强折算成液柱高(水柱高),加到水的高度H中去,然后用新的水位高H?来进行计算,步骤都按液面为大气压强时计算。
?10?3.966m H??5.486?19.49.8?1043闸门左侧所受压力:
h1.829F1??1ghcA??1g(H??)hb?9.8?103?(3.966?)?1.829?1.219?6667422N
页脚内容 《工程流体力学(杜广生)》习题答案 作用点: yD1bh3Ih12?yc1?cx?(H??)??3.143hyc1A2(H??)hb2m
闸门右侧所受压力:
F2??2ghc2A?750?9.8?1.829?1.829?1.219?149862?2h?1.2193N
作用点: yD2m
2???(H?h)?F?h?FBhD123由力矩平衡方程: F??y1(对:
A点取矩) 解
FB得
66674?1.006?14986?1.219??26685N 1.829px??ghcA?1000?9.8?1.83?1.83?1?16409.622-28
N
1pz??gVp?1000?9.8???1.832?1?25763.14N
2-29 C点的测压管水面的距离
p?p196120?101325H???9.673m ?g9800ah222??F?Fz??gVp??g??R2(H?)??R3??9800?3.14?12(9.673???1)2323??
?246.37kN
A2-30 A点:F B
2??ghcA?1000?9.8??2?1.5?294002N :
点
页脚内容 《工程流体力学(杜广生)》习题答案 1??22FB?G??gVp?24240?1000?9.8???1.5?116124N
2-31
1212Fz??gVp??g(?D2H??R3)?9800?(?3.14?0.52?1??3.14?0.253)4343
F??1602.71Fz4N ?400.7N
Fx??ghcA?9800?3.53.5132-32
3.5?3.5?1?600252N
Vp?1??xdy??ydy?3.98600m
3
Fz??gVp?39058N
N
F?Fx2?Fz2?71613.82-33 (1)
h0hFx??ghcA?9800??h?1?4900h22h22Fz??gVp??g?xdz??g?0hR2h22R?zdz?9800(R?h?arcsin)22R(2)
hFx??ghcA?9800??h?1?4900h22hh3
Fz??gVp??g?xdz??g?00z?g2219600dz?h?hha3a3a(3)
hFx??ghcA?9800??h?1?4900h22hh
1z9800hFz??gVp??g?xdz??g?(arcsin)dz?(harcsin?a2?h2?a)baba002-34
(1)
页脚内容 《工程流体力学(杜广生)》习题答案 11Fz??gVp??g?D2(?1??2)?9800??3.14?22?(8.5?3.5)?153.8644kN
(2) F?0 F?0
2-35 (1) W??gV??g(1?dH) 4xz24W4?29.43?104H???3.31?g?d29800?3.14?3.42m
(2) 设在外载荷的作用下,室内的水面又升高了H? 11dh ?dh??(d?d)H? ?H??44d?d221222121F?W??g?d2?(h?H?H?)4 解得h?0.12m
2-36 设水的密度为?,煤油的密度为?? p?p??gH?13.82?10?1000?9.8?0.05?13.33kPa 又p??g(H?h)???gh?p
??gH13330?13800?1000?9.8?0.05??10.2mm 则h?p(???p??)g(0.8?1000?1000)?9.83ACABAB2-37 设7.5m高处的水平面为基准面,
则闸门上部自由液面距基准面的高度为H
则有p??g?1.5??gH p??g?1.5690000?9800?1.5H???71.9m ?g9800gg闸门形心的淹深(闸门形心距自由液面
页脚内容 《工程流体力学(杜广生)》习题答案 的距离)h闸
门
c1?71.9?3??3?sin60??67.62m
压m
力
的总
F??ghA?1000?9.8?67.6?3?2.5?4968.6kN
c所受
bh32.5?33Ihc67.61212yD?yc?cx?????78.07?h67.6ycAsin600.866c?3?2.5hb?0.866sin60(距自由液面)
2-38 水平方向的压力: 左侧F右侧Fx13??ghc1A1?1000?9.8??3?6?2646002??ghc2A2?1000?9.8?N N
x21.5?1.5?6?661502N 方向:水平由左指向右
竖直方向的压力:
Fx?Fx1?Fx2?1984503?Fz??gVp?1000?9.8???32?6?311566.544N 方向:垂
直自下向上
总压力F?F?F?369399.6N 方向:Ftg???0.6369, ??32.5 F2x2zxz?第三章
3-1 (1)二维流动 (2)定常流动
y,w?xy (3)u?xy,v??1323页脚内容 《工程流体力学(杜广生)》习题答案 ax??u?u?u?u12216?u?v?w?0?xy2y2?y32xy?0?xy4?xy4?24??24??t?x?y?z3333?v?v?v?v11132?u?v?w?0?xy2?0?y3y2?xy?0?y5??25??t?x?y?z3333?z?z?z?z11116?u?v?w?0?xy2y?y3x?0?xy3?xy3?23??23??t?x?y?z3333ay?az??16?32?16?a?i?j?k333
3-2 (1)三维流动 (2)非定常流动
(3)u?(14x?2y?xy)t,v?3x?y?z,w?0 当(x,y,z,t)?(2,2,3,1)时,
323ax??u?u?u?u?u?v?w?t?x?y?z?2t(14x3?2y?xy)?(14x3?2y?xy)(42x2?y)t2?(3x?y3?z)(2?x)t2?0?2?1?(14?23?4?4)?(14?23?4?4)?(42?4?2)?1?(6?23?3)?(2?2)?1?20644ay??v?v?v?v?u?v?w?t?x?y?z
?0?(14x3?2y?xy)?3?(3x?y3?z)(?3y2)?0?(14?23?4?4)?3?(6?23?3)?(?3?22)?348???a?20644i?348j
3-3
ax?u?u?u?u?v?w?x?y?zmxmx2?y2?2x2mym?2xy??2?x2?y22?(x2?y2)22?x2?y22?(x2?y2)2m2x??224?(x?y2)2
页脚内容 《工程流体力学(杜广生)》习题答案 ay?u?v?v?v?v?w?x?y?zmxm?2xymymx2?y2?2y2??222222?x?y2?(x?y)2?x2?y22?(x2?y2)2m2y??224?(x?y2)2
??m2m2xy?a??22i?j2222224?(x?y)4?(x?y)
3-4
dxdy?uvdy? 即xdx ?2t?y?t?3(?y?t?3)dx?(x?2t)dy?0
x,0x,y积分得
(?xy?tx?3x)0,0?(xy?2ty)x,0?C
即tx?3x?xy?2ty?C
-1)点,C??4,流线方程为t?0时,过P(-1,
3x?xy?4?0 3-5
dxdy?uvdy? 即?dx 4y4x22积分得x?y?C
流线簇是以坐标原点为圆心的同心圆,逆时针流动。
dxdydy?3-6 dx 即 ??y?xuv4xdx?4ydy?0?2?x2?y22?x2?y2积分得x?y?C
3-7
22 x
2?12?y2?23xx 则y?6? 3页脚内容 《工程流体力学(杜广生)》习题答案 y 又qv?uA?uy?1?6?xu?13
则u?36?x a?u339x?u?u?x?v?y?6?x(6?x)2?(6?x)3
当x?1时,ax?9125
3-8 (1)?u?x??v?y??w?z?(4x?y)?(?4x?2y)?(?y)?0 续
(2)?u?x??v?y??w?z?2t?(?2t)?0?0 连续 (3)?u?x??v?y?4y?6x?0 不连续 (4)?u?x??v?y?4x?(?4x)?0 连续 3-9 (1) ???A?dA11u11????2u2dA2?????A2??td?
(2) ??A?11u1dA1???A?2u22dA2
(3) ??Au11dA1???Au22dA2
(4)
?dA??1u1dA1??2u22??td?
?1u1dA1??2u2dA2
页脚内容 连 《工程流体力学(杜广生)》习题答案 u1dA1?u2dA2
?v??2ax 积分: 得?y3-10
?y?0?u?v?w???0?x?y?zv??2axy?f(x)
时 v?0 ?f(x)?0 则v??2axy
u?v?w?w???5?3??0 3-11 ??x?y?z?z?w??2?z 积分得
w??2z
3-12
p1V12p2V22z1???z2???g2g?g2g122其中:z?z;V?0
)?9.8?0.35则V?2(p??p)?2(?????)g?h?2?(1594?1000?2m/s 10002113-13
pAVA2pBVB2zA???zB???g2g?g2g
m/s;
其中:VzA?zB?1.2A?2.4m/s;
2dA0.152VB?VA2?2.4??5.42dB0.1p?1.5m m;?gA代入上式得3-14
pB2.42?5.42?1.2?1.5??1.506?g2?9.8m
p3V32p2V22z3???z2???g2g?g2g2 m;p2其中:zV2??z3?h2?h3?2.8?2.3?0.5?p3;
4qv4?48??3.02?d23600?3.14?0.0752m/s;代入数据解得
页脚内容 《工程流体力学(杜广生)》习题答案 V3?4.349m/s
m
p1V12p2V22z1???z2???g2g?g2g1223d3?4qv4?48??0.06249?V33600?3.14?4.3493-15
1其中:z?z?2m;p?p;V?2m/s 代入数据解得V?6.573m/s Vd2?0.3d???0.165m V6.57322112223-16 其中:zV1?p1V12p2V22z1???z2???g2g?g2g1
Pa;
;
Pa
?z2;p1??Hggh1?13600?9.8?0.025?3332p2???H2Ogh2??1000?9.8?0.15??1470qv2.12??22.82A10.0929m/s
V2?91.61代入数据解得
2q2.12A???0.0231m V91.61v22m/s,则
3-17设水箱液面为1-1,管道出口截面为2-2 pVpVz???z?? ?g2g?g2g12122212V22(3?2.1)?0?0?0?0?2g 得V2?10m/s
(1)
pAVA2p2V22zA???z2???g2g?g2g
页脚内容 《工程流体力学(杜广生)》习题答案 其中:zA?z2?3m;
A2d20.0952VA?2V2??10?4.012dA0.15m/s;p2?0
代入数据解得p?12600Pa
pVpV??z??(2) z?? g2g?g2gA2A222A2其中:z?z?3m;V?V;p?0 代入数据解得p??29400Pa
3-18 设水箱液面为0-0,管道入口截面为1-1,管道最高处截面为2-2,管道出口截面为3-3 pVpVz???z?? ?g2g?g2gA2A22A02032303V324?0?0?0?0?2g3 解
2得 V?8.854m/s
33.14?0.1?dV??8.854?0.0695m/s q?144v233p0V02p2V22z0???z2???g2g?g2gz2?z0?h230a
0,p?p?99974Pa,VV?V?8.854m/s
代入数据得h?5.5m pVpVz???z?? ?g2g?g2g02012101?0,
p2?7367Pa,
z0?z1?2,p0?pa?99974Pa,V0?0,p1?73674qPa,V?? d1v21页脚内容 《工程流体力学(杜广生)》习题答案 代入数据得d?76.7mm
3-19 设水箱液面为1-1,管道收缩截面为2-2,管道出口截面为3-3
pVpVz???z?? ?g2g?g2g122232323其中zV2?(3?z2?9?3?6m,p2?19.92kPa,pm/s
3?93.7kPa,
502)V3?4V325
3代入上式得Vp1V12z1???z3?g2g31m/s,VpV?? ?g2g?4.23232?16.8p?93.7kPa,V?4.2m/s V?0,其中z?z?9?7.5?1.5m,
代入上式得p?117.22kPa,则p?p?p?117.22?93.7?23.52kPa
3-20 设U型管入口驻点为1点
pV则: z??pg?V ?z??2g?g2g3131e1aA2A121A1H2OH2O其中:zVA?A?z1;V?0 则:
12?(p1?pA)?HO2?2?(?H2O??)g?h?HO2?2?(1000?800)?9.8?0.3?1.081000m
/s
3-21 设U型管入口截面为1-1,喷嘴出口截面为2-2
pV?z?? z??pg?V 2g?g2g12122212页脚内容 《工程流体力学(杜广生)》习题答案 其中V?0,z12?0,p?12.362?0,z1?6.0?4.5?1.5m,
p1?(?Hg??)g?0.5?(13600?1000)?9.8?0.5?61740Pa
代入上式得V3-22
z?z12m/s
m3/s
11qv??d2V2??3.14?0.052?12.36?0.024344peV2p1V12z???z1???g2g?g2g,p1?0,
d12V?2V1d,
设水银差压计左端入口压强为p?,则 p???g?1.27??g?3?13600?9.8?1.27?1000?9.8?3?139865.6Pa
Hg由
V12p?139865.6???139.86562?1000e 得V?16.725m/s
1代入数据解得p?135494.8Pa
1000)?9.8?0.76?13.7m/s 3-23 V?2(????)gh?2?(13600?1000Hg11qv??d2V??3.14?0.152?13.7?0.24244m3/s
3-24
V42?202gp1V12p4V42z1???z4???g2g?g2g
,V?0 整理得
1z1?z4?30?10?20m,p1?p4?0m
p3?10300p3V32p4V42z3???z4???g2g?g2gz3?z4?18?10?8m,Pa,
p4?105Pa,
页脚内容 《工程流体力学(杜广生)》习题答案 22d4d4V3?2V4?V24d30.275
424代入数据解得d?0.2789m pVpVz???z?? ?g2g?g2g222424z2?z4?25.5?10?15.5m,
p2?10300Pa,
p4?105Pa,
?2?2d4d4V2?2V4?V24d20.3
4代入数据解得d??0.2727m 比较d?d?,所以不发生汽化的最大直径为d?0.2727m?272.7mm(应用小的)
3-25 设集流器入口截面为1-1,玻璃管对应截面为2-2 pVpVz???z?? ?g2g?g2g44412122212其中z代
V2?1?z2,p?0,V?0,p入上
11?2p2??2?H2Og?h??
式
2?1000?9.8?0.1?40.41m/s 1.22???H2Og?h得
11qv??d2V2??3.14?0.352?40.41?3.89444q3-26 V??d1v21m3/s m/s
?4?226?223600?3.14?0.2V2?4qv4?226??8?d223600?3.14?0.12m/s
1p1V12p2V22z1???z2???g2g?g2g 其中z页脚内容 ?z2
《工程流体力学(杜广生)》习题答案 则p2?p1??V122??V2221000?(22?82)?200000??1702kPa
在水平面内建立平面坐标系xoy,并取缓变流截面1-1,2-2及管道边界为控制面。作用在控制面内液体的外力有:弯管对水流的作用力F,作用在1-1和2-2截面的动水压力pA和pA,控制面内水体的重力。由于重力铅直向下,在水平面的x轴和y轴方向分量为零;不计水流阻力时,动量修正系数????1。所以沿x轴和y轴方向建立动量方程得:
y F Fy
0 x Fx ?
x轴: ?q(u?u)?pA?F
112212v2111x代入数据: 解得Fx2263.14?0.221000??(0?2)?200000??Fx36004
?6405.56N
页脚内容 《工程流体力学(杜广生)》习题答案 y轴: 代入数据: 解得F2xy?qv(v2?v1)??p2A2?Fy
2263.14?0.121000??(8?0)??170000??Fy36004N
F?F?F?6663.68N
合力与x方向的夹角为:
F1836.7??arctg?arctg?16 F6405.56?1836.72yy?x3-27 设平板对水的作用力F水平向左
?q(u?u)??F
v21代入数据:1000q?(0?3.144?q0.01)??100
vv2解得:q?0.0028m3/s
3-28 取0-0、1-1、2-2过水断面及水柱表面和平板边界为控制面,不考虑摩擦,动量修正系数????1。 沿x轴建立动量方程得: ?qv??qv??qvcos??0
v12v11v22v0 即:vA?vA?vAcos??0
由于: v?v?v 则A?A?Acos??0 —————— (1)
又:q?q?q?vA?vA?vA;则A?A?A —————— (2)
211222200120120vv1v2112200120页脚内容 《工程流体力学(杜广生)》习题答案 将(1)式和(2)式联立整理得:
A1?A0(1?cos?)2A0(1?cos?)2
A2?
沿y轴建立动量方程得: 0??q(?vsin?)?F 其中q?vA 代入整理得 F??vAsin?
3-29 设水深为2m处过流断面为1-1,水深1.5m处过流断面为2-2,取1-1、2-2及水面和固体边界为控制面。控制面内的水体沿水平方向受到的外力有:底坎对水流的反作用力R?;水流作用在断面1-1和2-2上的压力F,F;动量修正系数????1。则沿流向建立动量方程得:?q(V?V)?F?F?R?
v0yv00y2001212v2112所以:R??F?F??q(V?V) —————— (a)
1-1和2-2均为缓变流过水断面,故
2F??ghA?9800??2?2.7?52920N 212v211c11F2??ghc2A2?9800?2?0.15?0.5?(2?0.15?0.5)?2.7?24111.6752N
在1-1和2-2列伯努利方程:
页脚内容 V12V22h1??h2?2g2g《工程流体力学(杜广生)》习题答案 ——————(b)
又由连续性方程:A2?2.7V?V?V?1.48V A1.35?2.7121112V1A1?V2A2 得:
代
V1?入
2g(h1?h2)?1.482?12(
式解
2?9.8?(2?1.85)?1.572m/s 1.19m/s
b)得
所以,V?1.48V1?1.48?1.572?2.326m3/s
将已知数代入(a)式得:
qv?V1A1?1.572?2?2.7?8.49N
R?是R的反作用力,故R的大小为22406.86N,方向水平向右。
3-30 设液面为1-1,管子出口截面为2-2
pV?z?? z??pg?V 2g?g2gR??52920?24111.675?1000?8.49?(2.326?1.572)?22406.8612122212其中:z?z?1.5?0.6?2.5?4.6m;p?p代入上式得:V?9.495m/s
311q?V?d?9.495??3.14?0.15?0.1677m/s 441212?pa;V?0
1222v23-31在1-1截面和2-2截面列伯努利方程 pVpVz???z?? ?g2g?g2g12122212其中:z1?z2;V?V12A2A1
页脚内容 《工程流体力学(杜广生)》习题答案 代入上式:V理论流量:q实际流量:
2?11?(A2/A1)22gp1?p2?g2g
p1?p2?gT?V2A2?A21?(A2/A1)2
?A2q?CdqT?Cd?2?1?(A/A)21?p1?p2??2g?g??第四章
4-1 (1)?z?1?v?u1(?)?(0?0)?02?x?y2 无旋
有旋
(2)?(3)??y?(?z?(z?1?v?uk(?)??(ysinxy?xcosxy)2?x?y21?w?v1(?)?(1?1)?02?y?z2x?
1?u?w1?)?(1?1)?02?z?x2
无
有旋
1?v?u1?)?(1?1)?02?x?y2旋
(4) ??y?(?z?(x?1?w?v11(?)?(0?1)??2?y?z221?u?w11?)?(0?1)??2?z?x22
u?v??4y?0?4y?0 不存4-2 (1)??x?y在流函数 ??1?v?u1(?)?(8x?4x)?2x?02?x?y2页脚内容 1?v?u11?)?(0?1)??2?x?y22z
不存
《工程流体力学(杜广生)》习题答案 在势函数
(2)改为u?x?z?(2?2x?y2
存在势函数
?u?v??(2x?2)?(?2x?2)?0 存在流函数 ?x?y???u?x2?2x?y2?x1?v?u1?)?(?2y?2y)?02?x?y2 求势函数 积分:??1x33
?x2?xy2?f(y) ——————(a)
????2xy?f?(y)?v??2xy?2y?y
2f?(y)??2y 则f(y)??y?C
3代入(a)式得 ??1x3求流函数
2?x2?xy2?y2?C
???u?x2?2x?y2?y3
积分:??xy?2xy?1y3f?(x)?0?f(x) ——————(b)
???2xy?2y?f?(x)??v?2xy?2y?x
23 则f(x)?C
?Cy代入(b)式得 ??xy?2xy?13?y 4-3 (1)u????x???u?y?yv????x?y
—————
y 积分:??122?f(x)页脚内容 《工程流体力学(杜广生)》习题答案 —(a)
???f?(x)??v??x?x 即
f?(x)??x 则
12x?C21f(x)??x2?C2
2代入(a)式得 ??1y2(2)u?????3xx???u?3x2?3y2?y2?
?3y2
2v?????6xy?y3
积分:??3xy?y 即
?f(x) ———
———(b)
???6xy?f?(x)??v?6xy?xf(x)?Cf?(x)?0 则
3
2代入(b)式得 ??3xy?y?C
??x?y???2xy(3)u?? ?v???x?x?y??y22222?x2?y2?2???x2?y2?u??y?x2?y2?2 积分:??x??yy22?f(x) ———
———(b)
??2xy??xx2?y2??2?f?(x)??v?2xy?x2?y22? 即
f?(x)?0则f(x)?C
代入(b)式得 ??x??yy22?C(4)
页脚内容 ??2x4x?x2?y2?u????x?x2?y2?2?x2?y2?3
《工程流体力学(杜广生)》习题答案 ???2y4y?x2?y2?v???222?y?x?y??x2?y2?3???x2?y2?u??y?x2?y2?2
222?2xy?? 积分:(x?y)?f(x) ———
———(b)
??2y?3x2?y2?2y4y?x2?y2???f?(x)??v??223222?x?x?y??x?y??x2?y2?3
比较可知f?(x)?0 则f(x)?C 代入(b)式得 ??(x??2xyy)222?C4-4
u????3ax2?3ay2?y
v??????6axy?x
?v?u???6ay?6ay?0?x?y 无旋
v????bx?2ay?y24-5
?x??w?v??2?1?1?y?z?y??z??u?w??2?1?1?z?x
?v?u??2?1?1?x?y
4-6 (1)u?????2ax?by x???u?2ax?by?y
积分:??2axy?1by2?f(x) ——
————(a)
???2ay?f?(x)??v??bx?2ay?x 即f?(x)??bx 则
bf(x)??x2?C2
页脚内容 《工程流体力学(杜广生)》习题答案 代入(a)式得 ???1bx2(2)
ax?u?u?u?v?(2ax?by)2a?(bx?2ay)b?4a2?b2?x?y21?2axy?by2?C2
ay?u?v?v?v?(2ax?by)b?(bx?2ay)(?2a)?2ab?2ab?0?x?y
4-7
u????2?5y?x
v?????5x?3?y
2???u?2?5y?y 积分:??2y?5y2 即
?f(x) ———
———(a)
???f?(x)??v?5x?3?xf?(x)?5x?3 则
f(x)?52x?3x?C2
2代入(a)式得 ??5(x2由f得
?p?v?v???(u?v)??115??y?x?yx?y2)?3x?2y?C?1?pDu???xDt
fy?1?pDv???yDt
?p?u?u???(u?v)?65??x?x?y
4-8 由流函数性质可知 3
q?????(1?2?3?1)?(1?0?3?1)?2m/s
????4y v????4x?1 4-9 u????y?xvBA页脚内容 《工程流体力学(杜广生)》习题答案
???u??4y?x 积分:???4xy?f(y)
——————(a) ????4x?f?(y)?v??4x?1 ?y 则f(y)??y?C
代入(a)式得 ???4xy?y?C
VpV???由伯努利方程 p ?2?2f?(y)??1121222其中Vp2?p1?21?u12?v12?(?4?1)2?(?4?1?1)2?41
Pa
22V22?u2?v2?(?4?5)2?[?4?(?10)?1]2?1921?(V12?V22)2?3.6?1000?1.09?(41?1921)?2575.424-10
vr?qv4?2??2?r2?rr
vr1?22?r12922?r25r1?52?22?29
r2?12?22?5
52?r12922?r129529229?1029429vr2?vr1x?vr1cos?1?vr1
vr1y?vr1sin?1?vr1?vr2x?vr2cos?2?vr21212??r25552224??r2555
页脚内容 vr2y?vr2sin?2?vr2《工程流体力学(杜广生)》习题答案 合成速度
2rx2ryvrx?vrx1?vrx2?102108??295145
vry?vry1?vry2?44136??2951451082?1362??v?v?vr?1.21452m/s
y vr2 vr1 θ2 (3,2) θ1 r1
r2
(-2,0) 0 (2,0) x
页脚内容 《工程流体力学(杜广生)》习题答案
4-11 点源:??2??m?1ytg2?x?a1?m?1ytg2?x?a 点汇:
myy(tg?1?tg?1)2?x?ax?a
1??2?叠加后的流函数:???
y??y??m?1?x?ax?a?2ay??mtg?1?tgyy?2?2??x2?y2?a2?1??x?ax?a??
4-12复合流动的速度势函数与流函数分别为
qlnr —— ??Vrcos??2?V?———— (1)
q? —— ??Vrsin??2?V?页脚内容 《工程流体力学(杜广生)》习题答案 ———— (2)
流线方程为
V?rsin??qV??C2? ————
—— (3)
据此画出的流线如图所示。势流的速度场为
q?Vcos?? V???? r2?rVr? V??????V?sin?r??
—————— (4)
对于绕物体的流动,物体的型线(外轮廓线)必是一条流线,流动沿物体表面分流时,分流线只能在速度为零的滞止点与物体型线相交,因此表示物体型线的流线特征是其上存在滞止点。现确定滞止点的位置。令(4)式表示的速度为零,得
Vcos??2q?r?0
V?
?V?sin??0
由此式得 ???
页脚内容 《工程流体力学(杜广生)》习题答案
r?qV2?V?
—————— (5)
滞止点在图中以S表示。将滞止点坐标代入(2)式,得出过滞止点流线的流函数值
??VqVsin(?)?qV(?)?qV?2?V ?2?2 ———— (6)
故表示物体型线的流线方程为
Vrsin??qVqV?2???2 整理得 r?qV?????2?V?sin?
页脚内容 ——《工程流体力学(杜广生)》习题答案
4-13 求势函数 积分:??x2???u?2x?x
?f(y) ——————(a)
???f?(y)?v??2y?y
22 则f(y)??y?C 代入(a)式得 ??x?u?2x 求流函数 ???yf?(y)??2y?y2?C
积分:??2xy?f(x) ——————(b) ???2y?f?(x)??v?2y ?x 则f(x)?C
代入(b)式得 ??2xy?C
????2;v??4-14 u??????3 y?xf?(x)?0?z?(1?v?u1?)?(0?0)?02?x?y2 是有势流动
?2??2??2?0?0?02?x?y 满足拉普拉斯方程
第五章
页脚内容 《工程流体力学(杜广生)》习题答案 5-1
??5.84Rex?V?x??30?0.2?3.877?105?5?105?615.475?10?12 层流
?xV??5.84xRex?1.876?10?3m
5-2 由于是平板边界层,所以dp?0 dx动量积分关系式可以化简为
?ddvdy?vvdy?? ————(1) dx?dx???02x?w?0x由已知条件v则???0xy??y??2?()2?v?????
?w?(??dvx?v2?v?2y)y?0??(2?)?dy??y?0?vxdy??2x0y2?12y3?2?yv??2?()?dy?v?(y?2)?v?(??)??v????333?0??2?2?yy2?y3y4??yv?2?()?dy??v??42?43?4?dy0?????????2?452
??0vdy???032?v?(4y4y1y?8224??)?v(????)??v??2343515?3?4?50?
将以上结果代入(1)式中得
8d?2d??vv?v??2 15dx3dx??2?2??整理:
1v??2??x?C301v??d???dx15 积分:
?x12当x?0时 ??0,则C?0 30?x?x???5.48?5.48xRe vv??页脚内容 《工程流体力学(杜广生)》习题答案 ?w?2?v???23?4?2v???v??22?0.365?0.365?v??0.365?v?Rex230?xxv?xv?1
FD?b??wdx?0.365b??v0l3??ldxx0?0.73b??lv?0.73bl?vRel3?2??12
Cf?FD12?v?bl2?1.46Rel?12
5-3由于是平板边界层,所以dp?0 dx动量积分关系式可以化简为
?ddvdy?vvdy?? ————(1) dx?dx???02x?w?0x由已知条件v则????0x?v?sin(?y)2?
w?(??dvx??v???v??y)y?0?cos()?dy2?2?y?02??vxdy??0?y2??y2??2v?sin()dy?v?(?)cos()?v?(?)(cos?cos0)??v?2??2?0?2??y2??1222y2?v?sin2()dy?v?(?sin2y)?v?(?0)??v?2?24?2?022??02vxdy???0
将以上结果代入(1)式中得 1d?2d???vv?v?? 2dx?dx2??2?2??整理:
4??v??2??x?C22?4???2v??d???dx 积分:
当x?0时 ??0,则C?0
页脚内容 《工程流体力学(杜广生)》习题答案 ???2?2?x?x?4.788?4.788xRex24??v?v?1
133???v?(4??)??v???v??22?w???0.328?0.328?v??0.328?v?Rex22?8xxv?xFD?b??wdx?0.328b??v0l3??ldxx0?0.656b??lv?0.656bl?vRel3?2??12
Cf?FD12?v?bl2?1.312Rel?12
5-4 普朗特曾经作过这样的假设:沿平板边界层内的紊流流动与管内紊流流动相同。这时,圆管中心线上的最大流速v相当于平板的来流速度v,圆管的半径r相当于边界层的厚度?,并且假定平板边界层从前缘开始就是紊流。
.1850.161由??0.185Re?0.185?0vd ?vrxmax??15Re15(?)15(?)15代入?w??8?v2?0.0201?v2rv()1515?0.0201?v()r95?15
95xmax?将v?0.8v代入上式得?xmaxw?0.01345?v()r?15
现在将圆管中心线上的v和r用边界层外边界上的v和?代替,则得
???0.01345?v() v?xmax?w2?15?页脚内容 《工程流体力学(杜广生)》习题答案 又由已知条件v???0x?v?()y19? 则有
vxdy??v?()dy?0?y19?9?v?1092?v?11
?wd?2d?vdy?vvdy??x?xdx?0dx?0??0vdy??v()dy?02x?2?y29?代入动量积分关系式得
9d?9d??5???0.01345()11dx10dxv??151
1整理:积分:
110?5?d??0.01345?()dx9v?55110?5??0.01345?()x69v?61
整理:??0.25855(vx)??1616x?C
当x?0时 ??0,则C?0
???0.25855()x?0.25855xRe vx?x16?fdfd105?0.015-5 由Sr?V 得V?Sr??5m/s 0.2111qv??d2V??3.14?0.52?5?0.9844m3/s
1?V?2A25-6
V?? 由
FD?CD 得
2FD2?80?9.8??87.09CD?A0.8?1.292?0.2Rex?V?x?m/s
?V?x925?0.6?0.5??379.617?5?105?0.7315-7
?
页脚内容 《工程流体力学(杜广生)》习题答案 层流
边界层最大厚度发生在平板尾缘处:
?x?x0.731?0.5??5.84?5.84?5.84??0.15m V?V925?0.6??平板所受阻力(两个壁面):
3FD?2?0.686b??lV??2?0.686?0.15?0.731?925?0.5?0.63?1.758N
5-8
Rex?V?x??60?6?21.3?106?106?616.9?10 紊流
26?15平板所受阻力(两个壁面):
FD?2?0.036bl?VRel?2?0.036?2?6?1.1266?60?(21.3?10)2??15?119.9N
5-9 离平板前缘1m处:
Rex?V?x??30?165?2?10?5?1015?10?6?156?15 紊流 m
?1?0.37xRex?0.37?1?(2?10)?0.0203平板尾缘处:
Rex?V?x??30?265?4?10?5?1015?10?6?15?15 紊流 m
?2?0.37xRex?0.37?2?(4?106)?0.4035-10 VRe???160?1000?44.43600m/s
?V?x1.22?44.4x??5?105?5?1.79?105?105?1.79?10?5x??0.1651.22?44.4m
页脚内容 《工程流体力学(杜广生)》习题答案 可见层流边界层很短,主要是紊流边界
层
?1.79?10F?0.036bl?V()?0.036?8.25?110?1.22?44.4?() Vl1.22?44.4?110D2?15?5215??1151.738N
W
N
DP?FDV??1551.738?44.4?68897.175-11 取CFD?CD?1.2
N·m
m
11502?V?2A?1.2??1.2?()?25?1?0.00347223600H25?0.00347??0.043422弯矩M?F5-12 则有
DFD?CD111?V?2A?CD?V?2(?d2)224d?1V?8FD18?45000???21.86CD??102?1.2?3.145-13
21118000023.14?0.533222?dFD?CD?V?A?CD?V??0.08??1000?()?224236004?4405.133N
80000?97.893600P?FDV??4405.133?kW
N
5-14
FD?CD11120?10002?V?2A?0.3??1.293?()?2?431223600P?FDV??431?120000?14.373600Rex?kW
?5?1055-15 因为
V?x? 层流
页脚内容 《工程流体力学(杜广生)》习题答案 所以
Rex?5?105?15?10?6xmax???2.5V?3?125?12m
25?12Cf?1.372Rel?1.372?(5?10)2??12?0.00194
?0.01315FD?0.686bl?VRel?0.686?0.5?2.5?1.205?3?(5?10)N
5-16
CD?2FD2P2?6000???0.123?V?2A?V?A1.226?303?3
第六章 ?2000 层流 6-1 Re??Vd?Re?2000?7.5?10?3V1???1.526?d1780?0.0126m/s
Pa m/s
?1?6464??0.032Re2000
2l1?V120.032?12.2?780?1.5262?p1??ghf1??1??28139.3d120.0126?2V1A1?V2A2 则
?d1V2???d?2??1.26??V??1?0.63??1.526?6.104???2Re2??Vd780?6.104?0.0063??4000?3?7.5?10 (紊流光滑管)
kPa
?2?0.31640.3164??0.03980.250.25Re4000
?p2??ghf2l2?V220.0398?12.2?780?6.1042??2??1119.9d220.0063?2Re?Vd?1.07?0.3?281332?2000?61.141?106-2 (1)
? 紊流
1.07?0.3??1581?2000 层流 (2)Re?Vd?2.03?10?46-3
l?V2?p??ghf??d2 其中
页脚内容 V?4qv?d2
《工程流体力学(杜广生)》习题答案 ??6464??Re?Vd
?p?d43000?3.14?0.054????0.023128lqV128?10?0.002?4qv?d1?112则:6-4
Re1? Pa·s
V2d2V1d1?1
?d212??d11.53Re2??2?4qv?d2?2
??1??2Re ?Rev2 m/s
4q6-5 V??dRe??4?150?0.589823600?3.14?0.3?Vd850?0.5898?0.3??1503.89?2000?0.1 层流
64lV264?3500?0.58982hf???8.8Red2g1503.89?0.3?2?9.8m油柱
4q6-6 V??dv2?4?0.095?1.93623.14?0.25m/s
Re?Vd??1.963?0.25?49075?2000?510 紊流
?0.25??0.001d250 查莫迪图:??0.024
mH2O m
lV23001.9362hf???0.024??5.5d2g0.252?9.86-7
Re?Vdede?4A??4?0.3?0.25?0.2732?(0.3?0.25)??2000 保持层流
m/s L/s
页脚内容 Re??2000?15?10?6Vmax???0.11de0.273qvmax?VmaxA?0.11?0.3?0.25?8.25《工程流体力学(杜广生)》习题答案 6-8
V?lV2hf??d2g
m/s m3/s
2gdhf?l?2?9.8?1.2?0.3?3.7570.025?2011qv?V?d2?3.757??3.14?1.22?4.25446-9 设水箱A的液面为1-1,水箱B液面为2-2 pVpVz???z???h ———— ?g2g?g2g12122212j(1)式
z?z?H?H?8m,p?19612Pa,p?0,V?V?0 其中:
设入口局部阻力系数为?,弯头为?,突扩为?(对应于前面的速度),突缩为?(对应于后面的速度),阀门为?,出口为?
Vh?(??3?????????) 2g121212121234562j123456
V2?(0.5?3?0.35?0.57?0.375?4?1)2g
V2?7.4952g
代入(1)式,解得V?5.114m/s
11q?V?d?5.114??3.14?0.1?40.1L/s 4422v6-10
de?4A??4?1.0?1.5?1.22?(1.0?1.5)m
页脚内容 《工程流体力学(杜广生)》习题答案 qv4?104V???7.407A3600?1.0?1.5m/s
紊流
Re?Vde??7.407?1.25?3.738?10?2000?623.78?10?0.006??0.005de1.2 查莫迪图??0.03
m空气柱 kg/m3
————(1)
lV2107.4072hf???0.03???0.7de2g1.22?9.8?100??0T0273?1.293??0.946T100273?100?pf??100ghf?0.946?9.8?0.7?6.49Pa
6-11 式 其
V12p2V22z1???z2???hf?H2Og2g?H2Og2gp1???HO(z2?)?(z1?)??HOg?HOg?HOp22p1222中
1594?1000?h??h?0.594?h , 1000mH2O
V1?3V?0,m/s,
2lV121.432hf???0.025???0.3213d2g0.052?9.8代入(1)式,解得?h?0.23m
6-12 设水箱液面为1-1,管道入口截面为A-A,管道出口截面为2-2 pVpVz???z???h ?g2g?g2g12122212fV2lV2(h?l)?0?0?0?0???2gd2g
页脚内容 《工程流体力学(杜广生)》习题答案 V2h?lh?2h?2???l22g31??1?0.04?d0.04 ————(1)
式
pAVA2p2V22zA???z2???hf?g2g?g2g
————(2)
2?g(h?1)3paV2pAV2lV2l???0?????g2g?g2gd2g式
(1)和(2)式联立,解得p当h?1m时,p?p 由(1)式:V?2gAaA?pa?
h?lh?l?2gl1?l1??dh?l1?l
qv?V1212h?l?d??d2g?0.00556441?lv
当h?1m时,q与l无关
?U?6-13 ??1??dA A???U?3A其中
1??2?r02n22?7249U?Umax?Umax?Umax?n?1??2n?1??7?1??2?7?1?603
?Umax?y/r0?1/7???A?U49/60?2?rdr?max???33/7r0?y?1?60???2????2??0????r0?49??r0??r0?y?dy
2?2r0492?60?r0????49?170?1.058页脚内容 3《工程流体力学(杜广生)》习题答案 6-14 (1)V(2)
maxRe?2000?4.5?10?6???0.36d0.025m/s
64lV264500.362hf?????0.423Red2g20000.0252?9.8f?4m原油柱
?0.025??5.18?10? (3)??h2?lgr?0.423?49?.8506-15设圆管直径为d,损失为h;正方形边长为a,损失为h
f1f2
由于断面面积相等,即
64(1)层流,所以??Re
12?d?a24
a2??2?4d
?1Re2V2d2?1d2????2Re1V1d1?2d1hf1hf2
2l1V124a?1()22d12g?1d2d2a2?4a???2??2?22?2d1d14lVdd?222d22g(2)在紊流粗糙区,?只与?/d有关,所以???
12hf1hf22l1V124a?1d12g?1d2d24a?a??????dd2l2V22?2d1d1?2d22g
6-16 设水箱液面为0-0,喷嘴出口截面为3-3 pVpVz???z???h ?g2g?g2g02032303w页脚内容 《工程流体力学(杜广生)》习题答案 peV32H??0?0?0??hf?hj?g2g
+
V12?门
2gpeV32l1V12l2V22V12H????1??2??入
?g2gd12gd22g2g8q1?l?l?v2(4?151?252??入14g?d3d1d2d12+
V12?扩
2g+
V32?嘴
2g
+?门d1+?扩d1+?嘴d1)
4141438qv289224010.025?100.025?400.5?4?0.570.065???(????)1000?9.89.8?3.1420.0840.150.250.140.084解得:q?0.105m3/s
6-17 设封闭油箱液面为1-1,开口油箱液面为2-2
vRe?Vd??4qv4?0.42??990.8?2000??d3600?15?10?6?3.14?0.01 层流
p1V12p2V22z1???z2???hw?g2g?g2gH?pg?0?0?0?0?hf?hj
?g
V22glV2H??????gd2gpg(?入+?弯+?出)
8qv2g?2d4
64l???(?gRedpg+?入+?弯+?出)
98064108?0.422???(??0.5?0.4?1.0)?816?9.8990.80.0136002?9.8?3.142?0.014m
6-18 设水箱液面为1-1,管子出口为2-2,弯头局部阻力系数为?,阀门为? pVpVz???z???h ?g2g?g2g?7.37112122212w页脚内容 《工程流体力学(杜广生)》习题答案 V2lV2V2H?0?0?0?0????(2?1??)2gd2g2g
m/s
V?2gH2?9.8?4??2.622l101???2?1??1?0.025??2?0.5?6.9d0.111qv??d2V??3.14?0.12?2.622?0.020644p1V12pAVA2z1???zA???hw?g2g?g2gm3/s
?pvV2l1V20?0?0?h???(???1)?g2gd2gl1?V251000?2.6222pv??gh?(1????1)?9800?1.5?(1?0.025??0.5)?d20.12Pa
6-19 设上游水箱液面为1-1,下游水箱液面为2-2 4q4?0.2V???6.37m/s ?d3.14?0.2?24152.971v212Re1?V1d1??6.37?0.2?1265030?2000?61.007?10 紊流
1?0.046??0.00023d1200V2? 查莫迪图:??0.015
m/s
紊流
24qv4?0.2??2.8322?d23.14?0.3Re2?V2d2??2.83?0.3?843353?2000?61.007?10?0.046??0.00015d2300 查莫迪图:?页脚内容 ?0.014
《工程流体力学(杜广生)》习题答案 p1V12p2V22z1???z2???hw?g2g?g2g
+
V12?扩
2gl1V12l2V22V12H?0?0?0?0?0??1??2??入
d12gd22g2gV222g+
V22?门
2g+?出
28q?l?lH?v2(151?252??入14g?d1d2d1+?扩d1+?门d1+?出d1)
4142428?0.22?0.015?300.014?600.5?0.313.5?1.0????????9.8?3.142?0.250.350.240.34?
m
6-20 设水箱液面为1-1,管道出口截面为2-2 pVpVz???z???h ?g2g?g2g?9.3212122212w8qv230?0?0?16?0??hw24g?d
mH2O
8?0.142hw?30?16??10.79249.8?3.14?0.156-21设水箱液面为1-1,泵入口前截面为2-2 4q4?1.2?10V???0.955m/s ?d3.14?0.04?32v2Re?Vd??0.955?0.04?318.33?2000?41.2?10 层流
p1?1V12p2?2V22z1???z2???hw?g2g?g2g
页脚内容 《工程流体力学(杜广生)》习题答案 pap22V2lV2?pH??0?0???????g?g2gd2g?g(?入+?弯+?阀)
V22g64lp2??gH??pa??p???(2???入
Red+?弯+?阀)
V22264?3??0.955?860?9.8?1.7??1?0.07??101325?860??2??0.5?0.3?2.5??318.33?0.042??Pa
6-22设烟囱底部截面为1-1,烟囱顶部截面为2-2 pVpVz???z???h ?g2g?g2g?100567.92312122212wz2?z1?HV?V,
12?Vp,
1??100pPa,
2???0gH,
HV2hw?hf??d2g
整理得
100100?g0.7?9.8H???25.72?08?qv1.28?0.035?7.142??1?25?1250.73.14?9.8?1??gdm
6-23设烟囱底部截面为1-1,烟囱顶部截
面为2-2 pVpVz???z???h ?g2g?g2g12122212wz2?z1?Hhw?hfV?V,HV?? d2g122?V,p???1H2Og?20?10?3??196p???gH,Pa,
20整
V?2g理
?0gH?p1?H?gH?d1.19?9.8?50?196?500.66?9.8?2?9.8??10.762500.04?1.2页脚内容 得m/s
《工程流体力学(杜广生)》习题答案 11qv??d2V??3.14?1.22?26.53?12.1744m3/s
, m/s
6-24
z1?z2V12p2V22z1???z2???hw?H2Og2g?H2Og2gp1V22hw?hj??22g, ,p?2?p1?(???H2O)g?h2d2V1?2V2d1, V24qv4?16??0.5662?d223600?3.14?0.12整理得
2(???H2O)g?h1004d242?(1600?1000)?9.8?0.173?2?()?1??()?1??8.65322d150?H2OV21000?0.5622理论值或
2A2d2100222?2?(?1)?(2?1)?(2?1)2?9A1d150
m/s
d12V2?2V1d24q, V??d1v21?4?16?2.264723600?3.14?0.05d142(???H2O)g?h5042?(1600?1000)?9.8?0.173?1?1?()??1?()??0.5408d2100?H2OV121000?2.26472理论值
A12d1225022?1?(1?)?(1?2)?(1?)?0.56252A2d2100
6-25设上游水箱液面为0-0,下游水箱液
面为3-3 pVpVz???z???h ?g2g?g2g02032303wz0?z3?35?35?16?54m,V0?V3?0,p0?p3?0 m/s,
2V12V22l1V12l2V22V2??2??出hw??????入
2g2gD12gD22g2g
4q其中 V??D1V21?0.21656D12,V2?4qv4?0.17??9.625?d23.14?0.152页脚内容 《工程流体力学(杜广生)》习题答案 将数据代入伯努利方程得 0.0012??11.934 解得D?210mm 0.004666DD514116-26
V2H??hf2g 其中
H?6m,
lV24.6V2V2hf?????46?d2g0.12g2g整理得 V?6?2?9.8117.6?1?46?1?46?8.7?0.1假设??0.012 则V?8.7m/s,Re?Vd??8.7?10 ?1?105?6由于流动处于紊流光滑管区,又10?Re?3?10 所以代入公式1??2lg?Re???0.8 解得???0.012
56????,假设成立。
m/s
3
11qv??d2V??3.14?0.12?8.7?0.068446-27设水箱液面为1-1,管道出口截面为2-2 pVpVz???z???h ?g2g?g2g12122212wz2?z1?30?24?6m,
4q4?0.013V2?v??d23.14?0.152Re?V2d???1000?0.84?840kg/m , ,
Vl?0.736m/s, h?(???入) 2gdV1?0p2?0223
w?0.736?0.15?52573?20002.1?10?6 紊流
?0.122??0.0008d150 查莫迪图:??0.023
页脚内容 《工程流体力学(杜广生)》习题答案 整理得
?V22lp1??g(z2?z1)?(1????入
2d)
0.023?152840?0.7362?840?9.8?6?(1??0.5)?0.152 ?55035.82Pa 4qh6-28 将V??代入dv2flV2??d2g整理得
8lqv28?2438?1.062d?2????3.4627?2?ghf3.14?9.8?65.55 —————
—(1)
4q将V??代入Re的公式得 dv2Re?Vd??4qv14?1.061160752????d3.14?8.4?10?6dd —————
—(2)
假设??0.0245,则d?0.6105m,Re?263293,?/d?0.002,查得???0.0245 由于????,所以假设成立,d?0.6105m?610.5mm 6-29由伯努利方程得H?h?h,即lVlV ???d2gd2gf1f212122212d设d12?12V,则V12?l2d1?l1d2l22l1
1qv1d12V11l2?2?qv2d2V242l1 若l?l2,则
qv12?qv28
页脚内容 《工程流体力学(杜广生)》习题答案 6-30 设自由液面为1-1,高于自由液面3
米处管道截面为2-2
pV?z???h 向上流动:z??pg?V2g?g2g12122212wpeV22l0?0?0?3???(???入
?g2gd)
V222g则
lpe??3?g?(1????入
d)
?V222
0.9?31000?32??3?9800?(1?0.025??0.5)?0.152Pa
向下流动:z??390752p2V22p1V12???z1???hw?g2g?g2gpeV22l3???0?0?0?(???出
?g2gd)
V222g则
lpe??3?g?(?1????出
d)
?V222
0.9?31000?32??3?9800?(?1?0.025??1.0)?0.152Pa
6-31设水箱液面为0-0,管道出口截面为3-3 pVpVz???z???h ?g2g?g2g??2647502032303wz0?z3?H,p0?p3?0,VV1?4qv4?90??d123600?3.14?0.152, ?1.415m/s
0?0页脚内容 《工程流体力学(杜广生)》习题答案 V2?4qv4?90??2.038?d223600?3.14?0.12524qv4?90??3.18522?d33600?3.14?0.1m/s
V3?m/s
整理得
V32H??hw2g
+
V22?缩
2gV32l1V12l2V22V12???1??2??入2gd12gd22g2g+
V22?阀
2g+
V32?嘴
2g
10.037?25?1.41520.039?10?2.03822??(3.185???0.5?1.4152?0.15?2.03822?9.80.150.125?2.0?2.0382?0.1?3.1852)m 6-32 ?h?2.367f1l1V12l2V22?hf2??1??2d12gd22gv12
4qv22451?()20.22?9.8??0.2v24q1?()即0.025?0.501252?9.8??0.1252?0.025?
1280qv1?375qv2qv1?qv2?qv
?qqv1??3.41qv1 又
m3/s
则
qv450??0.02831?3.413600?4.41qv2?qv?qv1?0.0967m3/s
mH2O
m
4A4?1?1.4?1.1672?(1?1.4)l1V125014?0.02832hf??1?0.025??()?2.72d12g0.1252?9.83.14?0.12526-33
qv105V???19.84A3600?1?1.4de???m/s
页脚内容 Re?Vde??19.84?1.167?1543651?615?10《工程流体力学(杜广生)》习题答案 ?1??0.00086de1167 查莫迪图:??0.019
Pa m/s
lV26019.842?pf????0.019??1.205??231.67de21.16726-34
c?c01?E0dE??1?14402.07?10150?888?1055?1440?12001.2ph4?1051V????c1000?12003m/s
L/s
?1440?1262.31.14111qV?V??d2???3.14?0.152?5.894346-35
c?c01?E0dE??1?14402.07?10300?510206?105m/s
kPa
6-36 设A容器内液面为1-1,装置B内液面为2-2 pVpVz???z???h ?g2g?g2gph??cV?1000?1262.3?1.2?1514.712122212wz2?z1?160?26?134m;V?V12?0v2;p2?40kPa m/s,
4q管道中的流速:V??d?4?0.1?5.6623.14?0.15Re?Vd??5.66?0.155?7.5?10?2000?50.113?10 紊流
?/d?0.015/150?0.0001 查得??0.014
lV2325?160?2605.662hw?(??0.4?0.9?0.9?1)?(0.014??3.2)?118.8d2g0.152?9.8m
页脚内容 《工程流体力学(杜广生)》习题答案 代入伯努利方程解得:p?2517.44kPa
?11500?0.051mH2O 6-37 h?p??gp?120001000?9.8112w1?2V1?4qv4?0.005??2.548?D23.14?0.052m/s,
V3?hw1?34qv4?0.005??7.07722?d3.14?0.03m/s,
p1?p3V12?V32?(z1?z3)???g2g12000?103002.5482?7.0772?10??1000?9.82?9.8?7.95mH2O
第七章 7-1 c??RT?1.4?287?273?331.2m/s
T??1V??1?1?Ma 则?1?7-2 T T2?RTT22024整理得7-3
??1(??1)V2(1.33?1)?2252T?T0??(273?314)??5732?R2?1.33?462K
t?T?273?300?C
kg/m3
??p101300??1.196RT287?(273?22)??1V21.4?18521?Ma?1??1???1.0121922?RT21.4?287?(273?22)2p0?p(1???12Ma)2???1?101300?1.012191.41.4?1?105.688kPa
?0??(1???12Ma)21??1?1.196?1.0121911.4?1?1.233kg/m3
页脚内容 《工程流体力学(杜广生)》习题答案 T0?T(1???12Ma2)?(273?22)?1.01219?298.6K t0?T0?273?25.6?C
7-4
c??RT?1.4?287?(273?20)?343.1m/s
(1)Ma?V150c?343.1?0.437 (2)Ma?Vc?800343.1?2.33 (3)Ma?V150?800c?343.1?2.77 7-5
?p131?RT?37000287?(273?100)?0.3456kg/m
1?p1V221?p2V??1????2
12??1?22 又由于是等熵过程p11???p2 1?? 则
?p2??1(22p)?1入上式整理得
??1p2?[p?1???1?(V21?V22)??1???11p12?]
1.4?11.4?[370001.4?0.3456?37000?11.4?(452?1352)1.4?11.4?12?1.4]
?34.3kPa
由c22c22112V2?RT1V21?RT2??1?V2???1?2 即
??1?2V22???1?2整
理
T(V21?V22)??1(452?1352)1.4?12?T1?2?R?(100?273)?2?1.4?287?365K
t2?T2?273?92?C
页脚内容 代
得《工程流体力学(杜广生)》习题答案 7-6 设空气是不可压缩流体
由 p??RT —————————— (1)
V2p???p02 ——————
———— (2)
V T?T?2 ——————c20p————— (3)
其中 p?p??p?p??1.5?10?6581.068?143418.9Pa p?1.5?10Pa,T?27?273?300K,c?1005J/(kg·K),
K) R?287J/(kg·
代入(1)(2)(3)式,得
3
??1.69kg/m,T?296K,V?88.32m/s
设空气是可压缩流体 pV?1V???1?由 p?p?2 ?RT4?RT?500500p220??代入数据化简得
V?0.4768?10V?0.3718?10?0 解得 V?87.6m/s
3p100000??1.169kg/m 7-7??RT287?(273?25)46210000qmax?A?22(??1)22?(1.4?1)?p0?0()?1964?10?6?1.4?105?1.169?()??11.4?1??11.4?1
页脚内容 《工程流体力学(杜广生)》习题答案 ?0.4598m/s
2??1????????pp2?22????p0?0????p??????1p0????0?????3
又
qmax?A2
21.4?1??1.41.4pp2?1.4?????0.4598?4418?10?6??105?1.169???25???25???10??1.4?1?10????p?0.0132??25??10?1.429?p???25??10?21.715
经计算得p?7640Pa
7-8 c??RT?1.4?287?273?331.2m/s
680??2.053 Ma?Vc331.211111激波后的压强为
p2?p1(2???12?1.41.4?1Ma12?)?90?103?(?2.0532?)?4.28?105??1??11.4?11.4?1Pa
激波后的温度为
?2(??1)?Ma12?1?2T2?T1?1?(Ma?1)?122(??1)Ma1??
?2?(1.4?1)1.4?2.0532?1?2?273??1???(2.053?1)?22(1.4?1)2.053?? ?472.55K
激波后相对激波的风速为
2?(??1)Ma122?(1.4?1)?2.0532V2?V1?680??247.822(??1)Ma1(1.4?1)?2.053m/s
7-9
V?c??RT?1.4?287?(273?30)?348.92m/s
c348.92??608.3?sin?sin35m/s
页脚内容 《工程流体力学(杜广生)》习题答案 7-10 设飞机飞过地面观察者的水平距
离为x时,才能听到声音
V?Ma?c?Ma?RT?2.2?1.4?287?273?728.6m/s
sin??11??0.4545Ma2.2 则tg??0.51
x?18?35.274tg?km 则时间为s
x35274??48.4V728.67-11 (1) 11km以下为对流层,温度梯度为-6.5K/km
?6.5?T则1000 解得?T??1.98K ?304.88又标准大气:地面温度为15℃,大气压为1.01325×105Pa T?T?T?288.15?1.98?286.17K c??RT?1.4?287?286.17?339m/s V?Ma?c?0.8?339?271.2m/s
0(2)
?6.5?T?100010670.73 解得?T??69.36K
K
c??RT?1.4?287?218.79?296m/s V?Ma?c?0.8?296?237.2m/s
?Ma?c 7-12 V?600003600T?T0?T?288.15?69.36?218.79页脚内容 《工程流体力学(杜广生)》习题答案 则 V?0.8?339?16.67?254.5m/s
7-13 V?2c?1.5c?3.5c
c1sin????0.2857 V3.5??16.6
汇总
第一章
3
1-1 ??906kg/m;d?0.906 1-2 ??0.544kg/m3 1-3 q?61.98m3/h 1-4 ??5?101/Pa 1-5 ??2.9?10 Pa·s 1-6 ??1.3?10m2/s
?5.23?10 1/s;(2) 1-7 (1) dudy?V?9?4?65??5.33?10?3 Pa·s;
(3) ??2.79?10Pa
1-8 (1)??2?y;(2)??2?
31-9 (1)
1F?2?bLu0h ;(2)
2???u0h ;(3)??0
1-10 ??0.967 Pa·s;?Htg?1-11 T???? 2?cos?43?1.933 Pa·s
1-12
P?11.05kW
页脚内容 《工程流体力学(杜广生)》习题答案 1-13 P?4.42kW 1-14 4T????d32? 1-15 F?4.258?10?3N 1-16 n?90r/min 1-17 F?14.75N 1-18 T?79.2 N·m 1-19 86.7%
1-20 hH2O?29.3mm 1-21 hHg?11.7mm
1-22 2???gR?h1?2sin??2??Rcos??3?1?sin??2??
1-23 ??D11?4;?2??D4;F???D24L 1-24 ??6.586?10?3 Pa·s
第二章
2-1 pA?212.112kPa
2-2 pv?14059.08Pa;p?87265.92Pa 2-3 (a) pe?980Pa;(b) pe?813.4Pa;pe?12348Pa 2-4 h?1.305m 2-5 ?p?166.6Pa 2-6 pe?13406.4Pa
页脚内容 (c)
《工程流体力学(杜广生)》习题答案 2-7 (1)p?79.287kPa;(2) p?31.563kPa
2-8 p?105.377kPa
2-9 (1)p?p?1385.93Pa;(2)L?35cm 2-10 p?6664Pa;?h?0.68m 2-11 h?1.86m 2-12 p?386944Pa 2-13 h?113.85cm 2-14 d?0.862
2-15 p?p?72.853kPa
p?3.065m 2-16 ??gABeAAB24BAB2-17 p?161802Pa 2-18 p??38.82kPa
2-19 (1) F?98N;(2) G?1.95N
2-21 F?322267.12N;y?4.171m(距A点) 2-22 (1)x?3.75m;(2)稳固 2-23 h?0.877m
2-24 y?1.414m;y?2.586m
2-25 F?35034.52N;y?2.266m(距液面) 2-26 F?19392.55N;y?2.58m(距液面) 2-27 F?26672N
2-28 p?16409.6N;p?25763.1N
BAD12DDBxz页脚内容 《工程流体力学(杜广生)》习题答案 2-29 F?246.37kN
2-30 F?29400N;F?1161N 2-31 F?400.7N
2-32 F?71613.8N
AB2-33 (1) (2) (3)
Fx?4900h2;
?hR2h22Fz?9800(R?h?arcsin)22Rhh
Fx?4900h2;F196003az
Fx?4900h2;Fz?9800h(harcsin?a2?h2?a)bax2-34 (1) F?153.86kN;(2) F?0,F?0
2-35 (1) H?3.31m;(2) h?0.12m 2-36 p?13.33kPa;h?10.2mm
2-37 F?4968.6kN;y?78.07m (距自由液面) 2-38 F?369399.6N;??32.5(与铅直方向的夹角) 第三章
3-1 (1)二维流动;(2)定常流动;(3)?16?32?16?a?i?j?k 333zAD?3-2 (1)三维流动;(2)非定常流动;
???(3)a?20644i?348j
??mmxy?3-3 a??4?(x?y)i?4?(x?y)j
22222222223-4
3x?xy?4?0
页脚内容 《工程流体力学(杜广生)》习题答案 3-5 x?y?C;逆时针流动
3-6 x?y?C
93-7 a?(6?9x);a?125
2222x3x3-8 (1)连续;(2)连续;(3)不连续;(4)连续
3-9 (1) ???udA????udA???????d? tA1111A2222? (2) (3) (4)
????A1?1u1dA1????2u2dA2A2
A1u1dA1???u2dA2A2
??d??t?1u1dA1??2u2dA2?;?udA??udA;udA?udA
11122211223-10 v??2axy 3-11 w??2z 3-12 V?2m/s 3-13 h?1.506m 3-14 d?0.06249m 3-15 d?0.165m 3-16 A?0.0231m2
3-17 (1) p?12600Pa;(2) 3-18 h?5.5m;d?76.7mm 3-19 p?23.52kPa
2epe??29400Pa
1e页脚内容 《工程流体力学(杜广生)》习题答案 3-20 V?1.08m/s
3-21 q?0.0243m3/s 3-22 p?135494.8Pa
3
3-23 q?0.242m/s 3-24 d?0.2727m 3-25 q?3.89m3/s
3-26 F?6663.68N;??16(合力与x方向的夹角)
3-27 q?0.0028m3/s
3-29 q?8.49m3/s;R?22406.86,方向水平向右
3
3-30 V?9.495m/s;q?0.1677m/s 第四章
VeVV?VVV4-1 (1)无旋;(2)有旋,?zk??(ysinxy?xcosxy)2??y??z??12
(3)无旋;(4)有旋,? (2)??1x3y4-3 (1)??122x
4-2 (1)不存在速度势函数和流函数
3?x2?xy2?y2?C12x?C23;??xy?2xy?1y323?C?
(2)??3xy?y?C (3)??x??yy?C
222页脚内容 《工程流体力学(杜广生)》习题答案 (4)??(x??2xyy)222?C
4-5
?x??y??z?1
24-6 (1)???1bx22x1?2axy?by2?C2y(2)a?4a?b;a?0
?p?p??115? 4-7 ??5(x?y)?3x?2y?C;?65?,?y2?x2224-8 m/s
4-9 ???4xy?y?C;p?2575.4Pa 4-10 V?1.2m/s
qV?23
qqlnr;??Vrsin??? 4-12 ??Vrcos??2?2?VV??4-13 ??x?y?C;??2xy?C
4-14 是有势流动;满足拉普拉斯方程 第五章
5-1 ??1.876?10m
5-2 ??5.48xRe;C?1.46Re 5-3 ??4.788xRe;C?1.312Re 5-4 ??0.25855xRe 5-5 q?0.98m3/s 5-6 V?87.09m/s
5-7 ??0.15m;F?1.758N 5-8 F?119.9N
22?3?x12?fl12?x12?fl12?x16VDD页脚内容 《工程流体力学(杜广生)》习题答案 5-9 ??0.0203m;??0.403m
5-10 x?0.165m;P?68897.17W 5-11 M?0.0434N·m 5-12 d?21.86m 5-13 P?97.89kW 5-14 P?14.37kW
5-15 C?0.00194;F?0.01315N 5-16 C?0.12 第六章
6-1 V?1.526m/s;?p?28139.3Pa;?p?1119.9kPa 6-2 (1) Re?281332?2000 紊流;(2)Re?1581?2000 层流
6-3 ??0.023 Pa·s 6-4 Re/Re?2/3 6-5 h?8.8m油柱 6-6 h?5.5mH2O 6-7 q?8.25L/s 6-8 q?4.25m3/s 6-9 q?40.1L/s 6-10 ?p?6.49Pa 6-11 ?h?0.23m
12fDDmax1212ffVmaxVVf6-12 (1)pA?pa?2?g(h?1)3;当h?1m时,pA?pa
页脚内容 《工程流体力学(杜广生)》习题答案 (2)qV?0.00556h?l;当h?1m时,q与l无关
V1?l6-13 ??1.058
6-14 (1)Vmax?0.36m/s (2) hf?0.423m原油柱 (3)??5.18?10?4?
6-15 (1)hf1??hf1h4;(2)h??
f2f226-16 qV?0.105m3/s 6-17 H?7.37m
6-18 qV?0.0206m3/s;pv?24152.97Pa 6-19 H?9.32m
6-20 hw?10.79mH2O 6-21 p?100567.923Pa 6-22 H?25.7m 6-23 qV?12.17m3/s
6-24 ?2?8.653,理论值?2?9或?1?0.5408,?1?0.5625
6-25 D1?210mm 6-26 qV?0.068m3
/s 6-27 pe?55035.82Pa 6-28 d?0.6105m 6-29
qV1q?2 V28页脚内容 理论值《工程流体力学(杜广生)》习题答案 6-30 向上流动:p??39075Pa;向下流动:
p??26475Pa 6-31 H?2.367m
3
h?2.72mH2O q?0.0967m/s;6-32 q?0.0283m3/s;
6-33 ?p?231.67Pa 6-34 q?5.89L/s 6-35 p?1514.7kPa 6-36 p?2517.44kPa
6-37 h?0.051mH2O;h?7.95mH2O 第七章
7-1 c?331.2m/s 7-2 t?300C
7-3 p?105.688kPa;??1.233kg/m3;t?25.6C 7-4 (1)Ma?0.437;(2)Ma?2.33;(3)Ma?2.77 7-5 p?34.3kPa;t?92C 7-6 (1)V?88.32m/s;(2)V?87.6m/s 7-7 q?0.4598m3/s;p?7640Pa(abs.) 7-8 p?4.28?10Pa;T?472.55K;V?247.8m/s 7-9 V?608.3m/s 7-10 t?48.4s
7-11 (1) V?271.2m/s;(2)V?237.2m/s 7-12 V?254.5m/s
eeV1V2ffVh1w1?2w1?3??000?22Vmax25222页脚内容 《工程流体力学(杜广生)》习题答案 7-13 ??16.6
?
页脚内容