8.OF平分∠BOC,OG⊥OF于点O,AE∥OF. 如图1,已知射线AB与直线CD交于点O,(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;
(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.
9.如图1,已知AB∥CD,∠B=20°,∠D=110°.
(1)若∠E=50°,请直接写出∠F的度数;
(2)探索∠E与∠F之间满足的数量关系,并说明理由;
(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.
6
10.问题情境
在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动. 操作发现
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系; 结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于 (用含α的式子表示).
11.已知直线AB∥CD.
(1)如图1,直接写出∠BME、∠E、∠END的数量关系为 ;
(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;
(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则= .
7
12.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED= °;
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
DI平分∠EDC,2,(3)如图3,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:∠AED=22°,∠I=20°,求∠EKD的度数.
13.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC. (1)求∠ABC的度数.
(2)请在图中找出与∠ABC相等的角,并说明理由.
(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.
8
14.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D. (1)求∠CBD的度数;
(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;
(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.
15.已知:点A、C、B不在同一条直线上,AD∥BE
(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;
(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;
(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.
9
参考答案
1.解:(1)如图1中,设PA交ON于F. ∵PA⊥OM,PB⊥ON, ∴∠PBF=∠OAF=90°, ∵∠PFB=∠OFA, ∴∠APB=∠1. 故答案为∠APB=∠1. www.czsx.com.cn
(2)如图2中,∵∠PAO=∠PBO=90°, ∴∠APB+∠1=180°. 故答案为∠APB+∠1=180°.
(3)由上述情形,用文字语言叙述结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角相等或互补.
(4)∵∠APB+∠1=180°, ∴∠APB=180°﹣50°17′=129°43′.
2.解:探究::∵AB∥CD,
∴∠B=∠1.(两直线平行内错角相等) 同理可证,∠F=∠2. ∵∠BCF=∠1+∠2,
∴∠BCF=∠B+∠F.(等量代换)
故答案为:两直线平行,内错角相等,等量代换.
10