1.1.2四种命题
上课时间 课题 教学目的 教学设想 教 学 过 程 第 周星期 第 节 1.1.2 命题及其关系(二) 进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系. 教学重点:四种命题的概念及相互关系. 教学难点:四种命题的相互关系. 课型 一、复习准备: 指出下列命题中的条件与结论,并判断真假: (1)矩形的对角线互相垂直且平分; (2)函数y?x2?3x?2有两个零点. 二、讲授新课: 1. 教学四种命题的概念: 原命题 逆命题 否命题 逆否命题 若p,则q 若q,则p 若?p,则若?q,则?p ?q ①写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假. (师生共析?学生说出答案?教师点评) ②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假: (1)同位角相等,两直线平行; (2)正弦函数是周期函数; (3)线段垂直平分线上的点与这条线段两个端点的距离相等. (学生自练?个别回答?教师点评) 2. 教学四种命题的相互关系: ①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系. ②四种命题的相互关系图: 互逆原命题逆命题 若p则q若q则p互 否为 逆互互 否否逆为 否互逆否命题 否命题若┐q则┐p若┐p则┐q互逆 ③讨论:例1中三个命题的真假与它们的逆命题、 教 学 过 程 ④结论一:原命题与它的逆否命题同真假; 结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系. ⑤例2 若p2?q2?2,则p?q?2.(利用结论一来证明)(教师引导?学生板书?教师点评) 3. 小结:四种命题的概念及相互关系. 三、巩固练习: 1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假. (1)函数y?x2?3x?2有两个零点;(2)若a?b,则a?c?b?c; (3)若x2?y2?0,则x,y全为0;(4)全等三角形一定是相似三角形; (5)相切两圆的连心线经过切点. 2. 作业:教材P9页 第2(2)题 P10页 第3(1)题