学校
班级
姓名
1
第 3单元 长方体和正方体
第6课时 长方体和正方体的体积(1)
【教学内容】
教材第29~31页的内容,教材第30页的例1及第32页练习七的第5~6题。 【教学目标】
1.通过讲授,引导学生找出规律,总结出体积的公式。 2.指导学生运用公式正确计算长方体、正方体的体积。 3.培养学生积极思考、探索新知的思维品质。 【教学重难点】
重点:掌握长方体、正方体体积计算方法。 难点:理解长方体、正方体体积公式的推导过程。 【教学过程】
一、 复习导入
1.什么叫体积?计量物体的体积常用的单位有哪些? 2.怎样计算一个物体的体积呢? 二、新课讲授
1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。 (1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘
2
米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
3
板书:长方体的体积=长×宽×高
讲述:如果用字母V表示长方体的体积公式可以写成:V=abh (3)质疑:求长方体的体积公式需要知道什么条件? 2.探究正方体的体积公式。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=a·a·a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)
3.运用长方体的体积公式解决问题。 (1)出示教材第30页的例1。 (2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。 (4)指名说出长方体的体积公式。
(5)指名学生上台板演过程,其他同学判断。 (6)老师订正书写。V=abh=7×4×3=84(cm3) (7)看图,学生独立在练习本上完成。 (8)指名板演,集体订正。 三、课堂作业
完成教材第31页做一做第1、2题。 四、课堂小结
1.这节课,你有什么收获?
4
2.在计算长方体和正方体的体积时,要注意哪些问题? 【板书设计】
长方体和正方体的体积(1)
长方体的体积=长×宽×高
V=abh
正方体体积=棱长×棱长×棱长
V=a·a·a=a3
【教学反思】
体积对学生来说是一个新概念,由认识平面图形到认识立体图形是学生空间观念的一次重大的发展,然而此时,学生对立体的空间观念还很模糊,教师应特别注意加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体体积计算公式的理解。在教学时,教师让学生把24个1立方厘米的小正方体摆放出不同的长方体,并把长、宽、高的数据填入表格中,启发学生思考怎样摆才是一个长方体,再引导学生进一步思考所摆的长方体所含小正方体的个数与它的长、宽、高有什么关系,最后通过学生观察比较,发现长方体体积的计算公式,并用字母表示。在教学完长方体的计算公式后,教师继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。学生通过一系列的活动,清楚地了解长方体和正方体体积计算公式的来源,应用起来也就得心应手,水到渠成了。
5