好文档 - 专业文书写作范文服务资料分享网站

最新-考研数学三历年真题及答案(2003-2013年)

天下 分享 时间: 加入收藏 我要投稿 点赞

2003年全国硕士研究生入学统一考试

数学三试题

一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)

1???xcos,若x?0,(1)设f(x)?? 其导函数在x=0处连续,则?的取值范围是_____. x若x?0,??0,(2)已知曲线y?x3?3a2x?b与x轴相切,则b2可以通过a表示为b2?________. (3)设a>0,f(x)?g(x)???a,若0?x?1,而D表示全平面,则I???f(x)g(y?x)dxdy=_______.

?0,其他,D(4)设n维向量??(a,0,?,0,a)T,a?0;E为n阶单位矩阵,矩阵 A?E???T, B?E?1??T, a其中A的逆矩阵为B,则a=______.

(5)设随机变量X 和Y的相关系数为0.9, 若Z?X?0.4,则Y与Z的相关系数为________.

(6)设总体X服从参数为2的指数分布,X1,X2,?,Xn为来自总体X的简单随机样本,则当n??1n时,Yn??Xi2依概率收敛于______.

ni?1二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)

(1)设f(x)为不恒等于零的奇函数,且f?(0)存在,则函数g(x)?f(x) x(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.

(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是

(A) f(x0,y)在y?y0处的导数等于零. (B)f(x0,y)在y?y0处的导数大于零. (C) f(x0,y)在y?y0处的导数小于零. (D) f(x0,y)在y?y0处的导数不存在. [ ] (3)设pn?an?an2,qn?an?an2,n?1,2,?,则下列命题正确的是

文档

(A) 若

?an?1?n条件收敛,则

?pn?1?n与

?qn?1?n都收敛.

(B) 若

?an?1?n绝对收敛,则

?pn?1?n与

?qn?1?n都收敛.

(C) 若

?an?1??n条件收敛,则

?pn?1??n与

?qn?1??n敛散性都不定.

(D) 若

?an?1n绝对收敛,则

?pn?1n与

?qn?1n敛散性都不定. [ ]

?abb???(4)设三阶矩阵A?bab,若A的伴随矩阵的秩为1,则必有 ????bba??(A) a=b或a+2b=0. (B) a=b或a+2b?0.

(C) a?b且a+2b=0. (D) a?b且a+2b?0. [ ] (5)设?1,?2,?,?s均为n维向量,下列结论不正确的是

(A) 若对于任意一组不全为零的数k1,k2,?,ks,都有k1?1?k2?2???ks?s?0,则?1,?2,?,?s线性无关.

(B) 若?1,?2,?,?s线性相关,则对于任意一组不全为零的数k1,k2,?,ks,都有

k1?1?k2?2???ks?s?0.

(C) ?1,?2,?,?s线性无关的充分必要条件是此向量组的秩为s.

(D) ?1,?2,?,?s线性无关的必要条件是其中任意两个向量线性无关. [ ]

(6)将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件

(A) A1,A2,A3相互独立. (B) A2,A3,A4相互独立.

(C) A1,A2,A3两两独立. (D) A2,A3,A4两两独立. [ ] 三、(本题满分8分) 设

f(x)?1111??,x?[,1). ?xsin?x?(1?x)212试补充定义f(1)使得f(x)在[,1]上连续.

文档

四 、(本题满分8分)

?2f?2f122设f(u,v)具有二阶连续偏导数,且满足,又??1g(x,y)?f[xy,(x?y)],求222?u?v?2g?2g?. ?x2?y2五、(本题满分8分) 计算二重积分 I??(xe??D2?y2??)sin(x2?y2)dxdy.

其中积分区域D={(x,y)x2?y2??}.

六、(本题满分9分)

x2n求幂级数1??(?1)(x?1)的和函数f(x)及其极值.

2nn?1?n七、(本题满分9分)

设F(x)=f(x)g(x), 其中函数f(x),g(x)在(??,??)内满足以下条件: f?(x)?g(x),g?(x)?f(x),且f(0)=0, f(x)?g(x)?2ex.

(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)

设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在??(0,3),使f?(?)?0.

九、(本题满分13分) 已知齐次线性方程组

?(a1?b)x1?a2x2?a3x3???anxn?ax?(a?b)x?ax???ax112233nn?? ?a1x1?a2x2?(a3?b)x3???anxn??????????????a1x1?a2x2?a3x3???(an?b)xn其中

?0,?0,?0, ?0,?ai?1ni?0. 试讨论a1,a2,?,an和b满足何种关系时,

(1) 方程组仅有零解;

(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型

222f(x1,x2,x3)?XTAX?ax1?2x2?2x3?2bx1x3(b?0),

中二次型的矩阵A的特征值之和为1,特征值之积为-12. (1) 求a,b的值;

(2) 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.

文档

十一、(本题满分13分) 设随机变量X的概率密度为

?1,若x?[1,8],? f(x)??33x2

其他;??0,F(x)是X的分布函数. 求随机变量Y=F(X)的分布函数.

十二、(本题满分13分)

设随机变量X与Y独立,其中X的概率分布为

X~??0.30.7??,

??而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

?12?2003年考研数学(三)真题解析

一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)

1???xcos,若x?0,(1)设f(x)?? 其导函数在x=0处连续,则?的取值范围是??2. x若x?0,??0,【分析】 当x?0可直接按公式求导,当x=0时要求用定义求导.

【详解】 当??1时,有

11???1??xcos?x??2sin,若x?0, f?(x)?? xx若x?0,?0,?显然当??2时,有limf?(x)?0?f?(0),即其导函数在x=0处连续.

x?0(2)已知曲线y?x3?3a2x?b与x轴相切,则b2可以通过a表示为b2? 4a6 .

【分析】 曲线在切点的斜率为0,即y??0,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到b2与a的关系.

【详解】 由题设,在切点处有

2 y??3x2?3a2?0,有 x0?a2.

又在此点y坐标为0,于是有

30?x0?3a2x0?b?0,

222故 b2?x0(3a2?x0)?a2?4a4?4a6.

【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. (3)设a>0,f(x)?g(x)???a,若0?x?1,而D表示全平面,则I???f(x)g(y?x)dxdy= a2 .

?0,其他,D【分析】 本题积分区域为全平面,但只有当0?x?1,0?y?x?1时,被积函数才不为零,因此实

文档

际上只需在满足此不等式的区域内积分即可.

【详解】 I? =a??f(x)g(y?x)dxdy=

D0?x?1,0?y?x?1??a2dxdy

22?dx?01x?1xdy?a2?[(x?1)?x]dx?a01.

【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.

(4)设n维向量??(a,0,?,0,a)T,a?0;E为n阶单位矩阵,矩阵 A?E???T, B?E?其中A的逆矩阵为B,则a= -1 .

【分析】 这里??T为n阶矩阵,而?T??2a2为数,直接通过AB?E进行计算并注意利用乘法的结合律即可.

【详解】 由题设,有

1??T, a1??T) a11 =E???T???T???T???T

aa11 =E???T???T??(?T?)?T

aa1 =E???T???T?2a??T

a1 =E?(?1?2a?)??T?E,

a11于是有 ?1?2a??0,即 2a2?a?1?0,解得 a?,a??1. 由于A<0 ,故a=-1.

2a AB?(E???T)(E?(5)设随机变量X 和Y的相关系数为0.9, 若Z?X?0.4,则Y与Z的相关系数为 0.9 .

【分析】 利用相关系数的计算公式即可. 【详解】 因为

cov(Y,Z)?cov(Y,X?0.4)?E[(Y(X?0.4)]?E(Y)E(X?0.4) =E(XY)?0.4E(Y)?E(Y)E(X)?0.4E(Y) =E(XY) – E(X)E(Y)=cov(X,Y), 且DZ?DX.

于是有 cov(Y,Z)=

cov(Y,Z)DYDZ=

cov(X,Y)DXDY??XY?0.9.

【评注】 注意以下运算公式:D(X?a)?DX,cov(X,Y?a)?cov(X,Y).

(6)设总体X服从参数为2的指数分布,X1,X2,?,Xn为来自总体X的简单随机样本,则当n??11n时,Yn??Xi2依概率收敛于 .

2ni?1【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,?,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:

文档

最新-考研数学三历年真题及答案(2003-2013年)

2003年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)1???xcos,若x?0,(1)设f(x)??其导函数在x=0处连续,则?的取值范围是_____.x若x?0,??0,(2)已知曲线y?x3?3a2x?b与x轴相切,则b2可以通过a表示为b2?____
推荐度:
点击下载文档文档为doc格式
75rxc00u4v7yqpo85se79mzf00wron00ixm
领取福利

微信扫码领取福利

微信扫码分享