数列与解三角形测试
一. 选择题 (每题6分,共60分)
(1)在等差数列{????}中,a3?a7?10,那么a2?a8? (C)
A .15 B.20 C.10 D.25
(2) 在等差数列{????}中,公差d?
a1?a3?a5?...?a99?
1
,前100项的和S100?145,那么2
(D)
A .160 B.100 C.90 D.60
111(3)数列1,?,,?,...的通项公式为
4916 A.
(C)
?111nn?11?????1??1? B. C. D.
n2n2n2n2(4) 2?1 和2?1的等比中项是 (C)
A .1 B. ?1 C. ?1 D.
1 2(5)在等比数列{????}中,a2?9,a5?243,则{????}的前4项和为(B)
A. 81 B. 120 C. 168 D. 192 (6)设等比数列{????}的公比q?2,前n项和为Sn,则
A. 2 B. 4 C.
S4 =(B) a21517 D. 22(7)在?ABC中,A:B:C=1:2:3,那么a:b:c= (C)
A. 1:2:3 C. 1:3:2
B. 3:2:1 D. 2:3:1
(8)在?ABC中,已知a?4,b?27,c?6,那么B= (C)
A. 30° B. 45° C. 60° D. 120° (9) 在?ABC中,已知C=90°,b?2,S?ABC?3,则c=(C)
A.
2 2B. 2 C. 22 D. 32
(10) 在?ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足
则∠C的大小为(D)
A.
cosC3c??, cosA3a?23b? 3B.
? 6C.
2? 3D.
5? 6二. 填空题(每题6分,共36分)
(11) 已知{????}为等差数列,a5?a8?a,那么a2?a5?a8?a11? ___2a___. (12)已知{????}为等差数列,a4?7,则S7?___49___.
(13)已知{????}为等比数列,a6?a8?2a7?a9?a8?a10?16,a7?a9? 4或-4 . (14)已知数列{????}前n项和Sn??n2?3n,则通项公式????= -2n+4 . (15)在?ABC中,A?(16) ?ABC的面积为
?4,C??6,b?10,则S?ABC? 25(3?1) .
163?,a?6,A?60,则?ABC的周长为 16 . 3三. 解答题(每题18分,共54分)
(17)已知数列{an}的前n项和为Sn,Sn?n2?2n(n?N?),a?a?...?a2nbn?24(n?N?)
n(i)求数列{an}的通项.
(ii)求证:数列{bn}是等差数列. 解:(i)当n=1时,a1?S1??1 当n?2时,
an?Sn?Sn?1?n2?2n?(n?1)2?2(n?1) ?2n?3综上:an?2n?3,n?N*
(ii)由bn?a2?a4?...?a2n(n?N?)n
bn?a2?a2n 2?2n?1当n?2时,bn?bn?1?2 所以数列{bn}是等差数列。
(18) 记Sn为等比数列{an}的前n项和.已知S2?2,S3??6. (1)求{an}的通项公式; (2)求Sn.
解:设{an}的首项为a1,公比为q.
?Sn为等比数列{an}的前n项和,S2?2,S3??6
?a1?a1q?2?? 2?a1?a1q?a1q??6解得:??a1??2
?q??2?an?(?2)n
2Sn?[(?2)n?1]
3(19) ?ABC的内角A,B,C的对边分别为a,b,c,且a?b,acosA?bcosB.
(i)证明:?ABC为直角三角形; (ii)若a,b,c成等差数列,求sinA. (i)证明:
?acosA?bcosBsinAcosA?sinBcosBsin2A?sin2B ?2A?2B或2A?2B??即A?B或A?B?又a?b, 所以A?B??2?2.
(ii) a,b,c成等差数列,
?2b?a?c ?222a?b?c?知a?3c 5a3? c5sinA?