好文档 - 专业文书写作范文服务资料分享网站

半导体物理学(刘恩科、朱秉升)第七版-最全课后题答案

天下 分享 时间: 加入收藏 我要投稿 点赞

第一章习题

1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分

别为:

h2k2h2(k?k1)2h2k213h2k2 Ec= ?,EV(k)??3m0m06m0m0m0为电子惯性质量,k1??a ,a?0.314nm。试求:(1)禁带宽度;

(2) 导带底电子有效质量; (3)价带顶电子有效质量;

(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

导带:2?2k2?2(k?k1)由??03m0m03k14d2Ec2?22?28?2又因为:2????03m0m03m0dk得:k?所以:在k?价带:dEV6?2k???0得k?0dkm0d2EV6?2又因为???0,所以k?0处,EV取极大值m0dk2?2k123?0.64eV 因此:Eg?EC(k1)?EV(0)?412m0

3k处,Ec取极小值4(2)m*nC?2?2dECdk23?m0 83k?k14

(3)m*nV?2?2dEVdk2??k?01m06(4)准动量的定义:p??k所以:?p?(?k)3k?k14

3?(?k)k?0??k1?0?7.95?10?25N/s4

2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能

带底运动到能带顶所需的时间。 解:根据:f?qE?h??k?k 得?t?

?qE?t?(0??t1??a)?8.27?10?8s

?1.6?10?19?102?(0??a)?107?t2? 补充题1

?1.6?10

?19?8.27?10?13s分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:

先画出各晶面内原子的位置和分布图)

Si在(100),(110)和(111)面上的原子分布如图1所示:

(a)(100)晶面 (b)(110)晶面

(c)(111)晶面

11?4?22(100):24?2??6.78?1014atom/cm2?82 aa(5.43?10)11

2?4??2?42?4?9.59?1014atom/cm2( 110):2a?a2a2 114??2??241422 111():4??7.83?10atom/cm33a2a?2a

2

补充题2

?271(?coska?cos2ka), 一维晶体的电子能带可写为E(k)?8ma28式中a为 晶格常数,试求

(1)布里渊区边界; (2)能带宽度;

(3)电子在波矢k状态时的速度;

* (4)能带底部电子的有效质量mn;

(5)能带顶部空穴的有效质量m*p

解:(1)由

dE(k)n??0 得 k? dka(n=0,?1,?2…) 进一步分析k?(2n?1)?a ,E(k)有极大值,

E(k)MAX2?2? ma2k?2n?a时,E(k)有极小值

所以布里渊区边界为k?(2n?1)?a

(2)能带宽度为E(k)MAX?E(k)MIN(3)电子在波矢k状态的速度v?(4)电子的有效质量

2?2? ma21dE?1?(sinka?sin2ka) ?dkma4?2mm?2?

1dE(coska?cos2ka)22dk*n能带底部 k?2n?* 所以mn?2m a(5)能带顶部 k?且mp??mn,

**(2n?1)?, a所以能带顶部空穴的有效质量mp?*2m 3半导体物理第2章习题

1. 实际半导体与理想半导体间的主要区别是什么?

答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。

(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。

2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。

As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。这个过程叫做施主杂质的电离过程。能够施放电子而在导带中产生电子并形成正电中心,称为施主杂质或N型杂质,掺有施主杂质的半导体叫N型半导体。 3. 以Ga掺入Ge中为例,说明什么是受主杂质、受主杂质电离过程和p型半导体。

Ga有3个价电子,它与周围的四个Ge原子形成共价键,还缺少一个电子,于是在Ge晶体的共价键中产生了一个空穴,而Ga原子接受一个电子后所在处形成一个负离子中心,所以,一个

Ga原子取代一个Ge原子,其效果是形成一个负电中心和一个空穴,空穴束缚在Ga原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga原子形成一个不能移动的负电中心。这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫P型半导体。

4. 以Si在GaAs中的行为为例,说明IV族杂质在III-V族化合物中可能出现的双性行为。

Si取代GaAs中的Ga原子则起施主作用; Si取代GaAs中的As原子则起受主作用。导带中电子浓度随硅杂质浓度的增加而增加,当硅杂质浓度增加到一定程度时趋于饱和。硅先取代Ga原子起施主作用,随着硅浓度的增加,硅取代As原子起受主作用。 5. 举例说明杂质补偿作用。

当半导体中同时存在施主和受主杂质时, 若(1) ND>>NA

因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到NA个受主能级上,还有ND-NA个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电电子的浓度为n= ND-NA。即则有效受主浓度为NAeff≈ ND-NA (2)NA>>ND

施主能级上的全部电子跃迁到受主能级上,受主能级上还有NA-ND个空穴,它们可接受价带上的NA-ND个电子,在价带中形成的空穴浓度p= NA-ND. 即有效受主浓度为NAeff≈ NA-ND (3)NA?ND时,

不能向导带和价带提供电子和空穴, 称为杂质的高度补偿 6. 说明类氢模型的优点和不足。

7. 锑化铟的禁带宽度Eg=0.18eV,相对介电常数?r=17,电子的有效质量

m*n =0.015m0, m0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态

轨道半径。

解:根据类氢原子模型:*4*mnqmnE013.6?4?ED???0.0015??7.1?10eV 2222m0?r2(4??0?r)?17h2?0r0?2?0.053nm ?qm0

h2?0?rm0?rr?2*?r0?60nm*?qmnmn

半导体物理学(刘恩科、朱秉升)第七版-最全课后题答案

第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k?k1)2h2k213h2k2Ec=?,EV(k)??3m0m06m0m0m0为电子惯性质量,k1??a,a?0.314nm。试求:(1)禁带宽度;(2)导带底电子有效质量;(3
推荐度:
点击下载文档文档为doc格式
7543u3cqhr75cln2z0an3ef8l940h6007r1
领取福利

微信扫码领取福利

微信扫码分享