2024年高考物理一轮复习考点全攻关
专题(18)应用牛顿运动定律解决“四类”热点问题(解析版)
命题热点一:动力学图象问题 1.常见图象
v-t图象、a-t图象、F-t图象、F-a图象等.
2.题型分类
(1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略
(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.
(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.
(3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 【例1】(多选)如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s.由题给数据可以得出( )
2
A.木板的质量为1 kg
B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2 【答案】AB
解析 由题图(c)可知木板在0~2 s内处于静止状态,再结合题图(b)中细绳对物块的拉力f在0~2 s内逐渐增大,可知物块受到木板的摩擦力逐渐增大,故可以判断木板受到的水平外力F也逐渐增大,选项C0.4-022错误;由题图(c)可知木板在2~4 s内做匀加速运动,其加速度大小为a1= m/s=0.2 m/s,对木
4-2
0.4-0.2
板进行受力分析,由牛顿第二定律可得F-Ff=ma1,在4~5 s内做匀减速运动,其加速度大小为a2=
5-4m/s=0.2 m/s,Ff=ma2,另外由于物块静止不动,同时结合题图(b)可知物块与木板之间的滑动摩擦力Ff=0.2 N,解得m=1 kg、F=0.4 N,选项A、B正确;由于不知道物块的质量,所以不能求出物块与木板之间的动摩擦因数,选项D错误.
【变式1】已知雨滴在空中运动时所受空气阻力F阻=krv,其中k为比例系数,r为雨滴半径,v为其运动速率.t=0时,雨滴由静止开始下落,加速度用a表示.落地前雨滴已做匀速运动,速率为v0.下列图象中不正确的是( )
22
2
2
【答案】D
解析 由mg-F阻=ma得,雨滴先加速下落,随着v增大,阻力F阻增大,a减小,a=0时,v=v0不再变化,故A、B正确;又mg=krv0,v0=D错误.
命题热点二:动力学中的连接体问题 1.连接体的类型 (1)弹簧连接体
2
2
2
mg44πρg32
r,故v20与r成正比关系,故C正确,2,又m=πρr,得v0=
kr33k
(2)物物叠放连接体
(3)轻绳连接体
(4)轻杆连接体
2.连接体的运动特点
轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.
轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.
轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等.
3.处理连接体问题的方法
整体法的选取原则 隔离法的选取原则 整体法、隔离法的交替运用
【例2】如图所示,两个质量相同的物体1和2紧靠在一起,放在光滑的水平桌面上.若它们分别受到水平推力F1和F2作用,而且F1>F2,则物体1对物体2的作用力大小为( )
若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量 若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解 若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力” 11
A.F1 B.F2 C.(F1+F2) D.(F1-F2)
22【答案】C
解析 设物体1和2的质量都为m,加速度为a,以整体为研究对象,由牛顿第二定律得a=2为研究对象,有a=
F1-F2
,以物体2mF12-F2F1+F2
,解得F12=,故C选项正确. m2
【变式2】如图所示,质量分别为2m和3m的两个小球静止于光滑水平面上,且固定在劲度系数为k的轻质弹簧的两端.今在质量为2m的小球上沿弹簧轴线方向施加大小为F的水平拉力,使两球一起做匀加速直线运动,则稳定后弹簧的伸长量为( )
A.
F2F3FF B. C. D. 5k5k5kk【答案】C
解析 对整体分析,整体的加速度a=,对质量为3m的小球分析,根据牛顿第二定律有:F弹=kx=3ma,
5m3F可得x=,故A、B、D错误,C正确.
5k【变式3】(多选)如图所示,倾角为θ的斜面体放在粗糙的水平地面上,现有一带固定支架的滑块m正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为
Fθ,斜面体始终保持静止,则下列说法正确的是( )
A.斜面光滑 B.斜面粗糙
C.达到稳定状态后,地面对斜面体的摩擦力水平向左 D.达到稳定状态后,地面对斜面体的摩擦力水平向右 【答案】AC
解析 隔离小球,可知小球的加速度方向沿斜面向下,大小为gsin θ,小球稳定后,支架系统的加速度与小球的加速度相同,对支架系统进行分析,只有斜面光滑,支架系统的加速度才是gsin θ,所以A正确,B错误.隔离斜面体,斜面体受到的力有自身重力、地面的支持力、支架系统对它垂直斜面向下的压力,因斜面体始终保持静止,则斜面体还应受到地面对它水平向左的摩擦力,C正确,D错误. 命题热点三:临界和极值问题 1.临界或极值条件的标志
(1)题目中“刚好”“恰好”“正好”等关键词句,明显表明题述的过程存在着临界点.
(2)题目中“取值范围”“多长时间”“多大距离”等词句,表明题述过程存在着“起止点”,而这些“起止点”一般对应着临界状态.
(3)题目中“最大”“最小”“至多”“至少”等词句,表明题述的过程存在着极值,这个极值点往往是临界点.
2.常见临界问题的条件
(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力FN=0. (2)相对滑动的临界条件:静摩擦力达到最大值.
(3)绳子断裂与松弛的临界条件:绳子断裂的临界条件是绳中张力等于它所能承受的最大张力;绳子松弛的临界条件是FT=0.
(4)最终速度(收尾速度)的临界条件:物体所受合外力为零. 3.解题基本思路
(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);
(2)寻找过程中变化的物理量; (3)探索物理量的变化规律;
(4)确定临界状态,分析临界条件,找出临界关系. 4.解题技巧方法
极限法 把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的 临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题 将物理过程转化为数学表达式,根据数学表达式解出临界条件 假设法 数学法
【例3】如图所示,小球A质量为m,木块B质量为2m,两物体通过竖直轻弹簧连接放置在水平面上静止.现对A施加一个竖直向上的恒力F,使小球A在竖直方向上运动,弹簧原长时小球A速度恰好最大,已知重力加速度为g.则在木块B对地面压力为零时,小球A的加速度大小为( )
A.3g B.2.5g C.2g D.1.5g 【答案】C
解析 弹簧原长时小球A速度恰好最大,则此时小球加速度为零,则恒力F=mg;木块B对地面压力为零时,由平衡条件知弹簧的弹力为2mg,对小球A,由牛顿第二定律得:F-mg-2mg=ma,解得小球A的加速度a=-2g,则加速度大小为2g,方向向下,故C正确.
【变式4】如图,滑块A置于水平地面上,滑块B在一水平力作用下紧靠滑块A(A、B接触面竖直),此时A恰好不滑动,B刚好不下滑.已知A与B间的动摩擦因数为μ1,A与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力.A与B的质量之比为( )
A.C.
1
μ1μ2
B.D.
1-μ1μ2
μ1μ2μ1μ2
1+μ1μ2
μ1μ2
2+μ1μ2
【答案】B
解析 对滑块A、B整体在水平方向上有F=μ2(mA+mB)g,对滑块B在竖直方向上有μ1F=mBg,联立解得:
mA1-μ1μ2=,选项B正确. mBμ1μ2