数列放缩法
常见的数列不等式大多与数列求和或求积有关,基本结构有4种:
??∑1.形如∑????? (k为常数) 2.形如????=1??=1?????(??) ??
3.形如∏????=1????? (k为常数) 4.形如∏??=1?????(??)
例1.求证:+
2
112
2+
12
3+?+
12??<1(??∈???)
变式1求证:+
21
222+
323+?+
??2??<2(??∈???)
变式2求证:
12+1
+
122+1
+?+
12??+1
<1(??∈???)
变式3求证:
例2.求证:
变式1求证:
变式2求证:
1
1
2+1
+
222+2
+?+
??2??+??
<2(??∈???)
1×3
+
13×5
+?+(
1
2???1)(2??+1)
<(??∈???)
2
1
1
1×3
+
13×5
+?+
1
(2???1)(2??+1)
≤(??∈???)
3
1
1
2×3
+
13×5
+?+
1
(??+1)(2??+1)
<
512
(??∈???)
例3.求证:1+
12
2+
13
2+??
1+??2<2(??∈???)
变式1求证:1+
变式2求证:1+
变式3求证:1+
13
2+
12
2+
13
2+??
1+??2<(??∈???)
4
7
12
2+
13
2+??
1+??2<(??∈???)
3
5
15
2+??
1(2???1)
2<(??∈???)
4
5
例4.已知数列{????},????=
2??2???1
(??∈???)求证:∑????=1????(?????1)<3
变式.已知数列{????},????=
259
2??2???1
(??∈???)求证:∑????=1????(?????1)<
例5. 求证:
13?2
+
132?2
2+?+
13???2??<(??∈???)
2
3
变式.求证:
1
3?2
+
132?2
+?+
13???2
<
1714
(??∈???)
例6. 求证:2(√??+1?1)<1+
变式.求证:1+
1√21√2+
1√3+?+
1√<2√??(??∈??) ???
+
1√3+?+
1√<√2(√2??+1?1)(??∈??) ???